cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077440 Squares and their roots having square decimal digits.

Original entry on oeis.org

0, 1, 100, 10000, 1000000, 1100401, 100000000, 110040100, 10000000000, 10100049001, 11004010000, 1000000000000, 1010004900100, 1100401000000, 100000000000000, 100100004990001, 101000490010000, 110040100000000
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 06 2002

Keywords

Comments

If k is a term, then so is 100 * k. - Robert Israel, Aug 26 2024

Examples

			a(6) = 1100401 = 1049^2.
A019544(8)=441 is not a term, as 441=21^2 and 2 is not a square digit.
		

Crossrefs

a(n) = A077439(n)^2.

Programs

  • Maple
    N:= 30: # for terms of up to 2*N digits
    R:= {1}: T:= {1,9}:
    for d from 2 to N do
      T:= select(t -> convert(convert(t^2 mod 10^d, base,10),set) subset {0,1,4,9}, map(t -> (t, t + 10^(d-1), t + 4*10^(d-1), t + 9*10^(d-1)), T));
      R:= R union select(t -> convert(convert(t^2,base,10),set) subset {0,1,4,9},T);
    od:
    R2:= map(t -> t^2, R):
    Res:= map(t -> seq(t*10^(2*i), i=0..(2*N-ilog10(t)-1)/2), R2) union {0}:
    sort(convert(Res,list)); # Robert Israel, Aug 26 2024
  • Mathematica
    a = {}; Do[d = FromDigits[ ReplaceAll[ IntegerDigits[n, 4], {3 -> 9, 2 -> 4}]]; If[ Union[ Join[ IntegerDigits[d^2], {0, 1, 4, 9}]] == {0, 1, 4, 9}, a = Append[a, d^2]], {n, 0, 3*10^4}]; a

Extensions

Edited by Robert G. Wilson v, Nov 08 2002

A136985 Numbers k such that k and k^2 use only the digits 1, 2, 3 and 9.

Original entry on oeis.org

1, 3, 11, 111, 139
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
No additional terms < 10^11. - Harvey P. Dale, Oct 21 2019
From David A. Corneth, Oct 21 2019: (Start)
No additional terms < 10^31.
The final digits of 1^2, 2^2, 3^2 and 9^2 are 1, 4, 9 and 1 respectively, of which only 1 and 9 are allowed. So a term must end in 1, 3 or 9.
Checking two digits, we see that only numbers ending in 11, 23, 39 or 99 squared have the last two digits allowed.
Similar for three digits, a term must end in one of 111, 911, 123, 323, 923, 139, 239, 339 or 999.
We can recursively see how a number must end and hence reduce the numbers that must be checked. For example, we only have to check 4204352 31-digit numbers to know there are no 31-digit terms.
(End)
No additional terms < 10^38. - Michael S. Branicky, Jul 05 2021

Examples

			139^2 = 19321.
		

Crossrefs

Programs

  • Mathematica
    With[{c={1,2,3,9}},Select[Flatten[Table[FromDigits/@Tuples[c,n],{n,3}]],SubsetQ[ c,IntegerDigits[#^2]]&]] (* Harvey P. Dale, Oct 21 2019 *)
  • PARI
    \\ See Corneth link. David A. Corneth, Oct 21 2019

A137144 Numbers k such that k and k^2 use only the digits 4, 6, 7 and 8.

Original entry on oeis.org

8, 88, 8874, 68474, 86478
Offset: 1

Views

Author

Jonathan Wellons (wellons(AT)gmail.com), Jan 22 2008

Keywords

Comments

Generated with DrScheme.
No further terms up to and including 1000000. - Harvey P. Dale, Dec 03 2010
No further terms <= 10^40. - Michael S. Branicky, Feb 12 2024
From Pontus von Brömssen, May 01 2024: (Start)
a(6) > 6*10^46 (if it exists).
If k = x*10^m is a term where 1 < x < 10 and k is not 88 or 8874, then 20/3 < x < 8.7674847468864688448864887688468686674647846475.
(End)

Examples

			86478^2 = 7478444484.
		

Crossrefs

Programs

  • Mathematica
    clearQ[n_]:=Module[{dc=DigitCount[n]},dc[[1]]==dc[[2]]==dc[[3]]==dc[[5]]==dc[[9]]==dc[[10]]==0]
    Select[Range[1000000],clearQ[#]&&clearQ[#^2]&] (* Harvey P. Dale, Dec 03 2010 *)
Showing 1-3 of 3 results.