A077445 Numbers k such that (k^2 - 8)/2 is a square.
4, 20, 116, 676, 3940, 22964, 133844, 780100, 4546756, 26500436, 154455860, 900234724, 5246952484, 30581480180, 178241928596, 1038870091396, 6054978619780, 35291001627284, 205691031143924, 1198855185236260
Offset: 1
References
- A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
- L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
- Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- J. J. O'Connor and E. F. Robertson, Pell's Equation
- Tanya Khovanova, Recursive Sequences
- Klaus Nagel, Length of cycles in bijection of 2 quadratic grids rotated by Pi/6 relative to each other, (2009).
- Eric Weisstein's World of Mathematics, Pell Equation
- Index entries for linear recurrences with constant coefficients, signature (6,-1).
Programs
-
Mathematica
CoefficientList[Series[4 (1 - x)/(1 - 6 x + x^2), {x, 0, 40}], x] (* Vincenzo Librandi, Feb 14 2014 *)
-
PARI
a(n)=if(n<1,0,subst(poltchebi(n)+poltchebi(n-1),x,3))
Formula
a(n) = (((3+2*sqrt(2))^n + (3-2*sqrt(2))^n) + ((3+2*sqrt(2))^(n-1) + (3-2*sqrt(2))^(n-1))) / 2.
a(n) = 6*a(n-1) - a(n-2) = 4*A001653(n).
G.f.: 4*(x-x^2)/(1-6*x+x^2).
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = sqrt(2)*(a^((2*n-1)/2) + b^((2*n-1)/2)). a(n) = sqrt(2*A003499(2*n-1)+4). - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n) = (2 + sqrt(2))*(3 + 2*sqrt(2))^n + (2 - sqrt(2))*(3- 2*sqrt(2))^n. - Antonio Alberto Olivares, Feb 23 2006
a(n) = 2*A075870(n). - Bruno Berselli, Nov 27 2013
G.f.: 2*Q(0)*x*(1-x)/(1-3*x), where Q(k) = 1 + 1/( 1 - x*(8*k-9)/( x*(8*k-1) - 3/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 10 2013
Comments