cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A001333 Pell-Lucas numbers: numerators of continued fraction convergents to sqrt(2).

Original entry on oeis.org

1, 1, 3, 7, 17, 41, 99, 239, 577, 1393, 3363, 8119, 19601, 47321, 114243, 275807, 665857, 1607521, 3880899, 9369319, 22619537, 54608393, 131836323, 318281039, 768398401, 1855077841, 4478554083, 10812186007, 26102926097, 63018038201, 152139002499, 367296043199
Offset: 0

Views

Author

Keywords

Comments

Number of n-step non-selfintersecting paths starting at (0,0) with steps of types (1,0), (-1,0) or (0,1) [Stanley].
Number of n steps one-sided prudent walks with east, west and north steps. - Shanzhen Gao, Apr 26 2011
Number of ternary strings of length n-1 with subwords (0,2) and (2,0) not allowed. - Olivier Gérard, Aug 28 2012
Number of symmetric 2n X 2 or (2n-1) X 2 crossword puzzle grids: all white squares are edge connected; at least 1 white square on every edge of grid; 180-degree rotational symmetry. - Erich Friedman
a(n+1) is the number of ways to put molecules on a 2 X n ladder lattice so that the molecules do not touch each other.
In other words, a(n+1) is the number of independent vertex sets and vertex covers in the n-ladder graph P_2 X P_n. - Eric W. Weisstein, Apr 04 2017
Number of (n-1) X 2 binary arrays with a path of adjacent 1's from top row to bottom row, see A359576. - R. H. Hardin, Mar 16 2002
a(2*n+1) with b(2*n+1) := A000129(2*n+1), n >= 0, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = -1.
a(2*n) with b(2*n) := A000129(2*n), n >= 1, give all (positive integer) solutions to Pell equation a^2 - 2*b^2 = +1 (see Emerson reference).
Bisection: a(2*n) = T(n,3) = A001541(n), n >= 0 and a(2*n+1) = S(2*n,2*sqrt(2)) = A002315(n), n >= 0, with T(n,x), resp. S(n,x), Chebyshev's polynomials of the first, resp. second kind. See A053120, resp. A049310.
Binomial transform of A077957. - Paul Barry, Feb 25 2003
For n > 0, the number of (s(0), s(1), ..., s(n)) such that 0 < s(i) < 4 and |s(i) - s(i-1)| <= 1 for i = 1,2,...,n, s(0) = 2, s(n) = 2. - Herbert Kociemba, Jun 02 2004
For n > 1, a(n) corresponds to the longer side of a near right-angled isosceles triangle, one of the equal sides being A000129(n). - Lekraj Beedassy, Aug 06 2004
Exponents of terms in the series F(x,1), where F is determined by the equation F(x,y) = xy + F(x^2*y,x). - Jonathan Sondow, Dec 18 2004
Number of n-words from the alphabet A={0,1,2} which two neighbors differ by at most 1. - Fung Cheok Yin (cheokyin_restart(AT)yahoo.com.hk), Aug 30 2006
Consider the mapping f(a/b) = (a + 2b)/(a + b). Taking a = b = 1 to start with and carrying out this mapping repeatedly on each new (reduced) rational number gives the following sequence 1/1, 3/2, 7/5, 17/12, 41/29, ... converging to 2^(1/2). Sequence contains the numerators. - Amarnath Murthy, Mar 22 2003 [Amended by Paul E. Black (paul.black(AT)nist.gov), Dec 18 2006]
Odd-indexed prime numerators are prime RMS numbers (A140480) and also NSW primes (A088165). - Ctibor O. Zizka, Aug 13 2008
The intermediate convergents to 2^(1/2) begin with 4/3, 10/7, 24/17, 58/41; essentially, numerators=A052542 and denominators here. - Clark Kimberling, Aug 26 2008
Equals right border of triangle A143966. Starting (1, 3, 7, ...) equals INVERT transform of (1, 2, 2, 2, ...) and row sums of triangle A143966. - Gary W. Adamson, Sep 06 2008
Inverse binomial transform of A006012; Hankel transform is := [1, 2, 0, 0, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Dec 04 2008
From Charlie Marion, Jan 07 2009: (Start)
In general, denominators, a(k,n) and numerators, b(k,n), of continued fraction convergents to sqrt((k+1)/k) may be found as follows:
let a(k,0) = 1, a(k,1) = 2k; for n>0, a(k,2n) = 2*a(k,2n-1) + a(k,2n-2) and a(k,2n+1) = (2k)*a(k,2n) + a(k,2n-1);
let b(k,0) = 1, b(k,1) = 2k+1; for n>0, b(k,2n) = 2*b(k,2n-1) + b(k,2n-2) and b(k,2n+1) = (2k)*b(k,2n) + b(k,2n-1).
For example, the convergents to sqrt(2/1) start 1/1, 3/2, 7/5, 17/12, 41/29.
In general, if a(k,n) and b(k,n) are the denominators and numerators, respectively, of continued fraction convergents to sqrt((k+1)/k) as defined above, then
k*a(k,2n)^2 - a(k,2n-1)*a(k,2n+1) = k = k*a(k,2n-2)*a(k,2n) - a(k,2n-1)^2 and
b(k,2n-1)*b(k,2n+1) - k*b(k,2n)^2 = k+1 = b(k,2n-1)^2 - k*b(k,2n-2)*b(k,2n);
for example, if k=1 and n=3, then b(1,n)=a(n+1) and
1*a(1,6)^2 - a(1,5)*a(1,7) = 1*169^2 - 70*408 = 1;
1*a(1,4)*a(1,6) - a(1,5)^2 = 1*29*169 - 70^2 = 1;
b(1,5)*b(1,7) - 1*b(1,6)^2 = 99*577 - 1*239^2 = 2;
b(1,5)^2 - 1*b(1,4)*b(1,6) = 99^2 - 1*41*239 = 2.
(End)
This sequence occurs in the lower bound of the order of the set of equivalent resistances of n equal resistors combined in series and in parallel (A048211). - Sameen Ahmed Khan, Jun 28 2010
Let M = a triangle with the Fibonacci series in each column, but the leftmost column is shifted upwards one row. A001333 = lim_{n->infinity} M^n, the left-shifted vector considered as a sequence. - Gary W. Adamson, Jul 27 2010
a(n) is the number of compositions of n when there are 1 type of 1 and 2 types of other natural numbers. - Milan Janjic, Aug 13 2010
Equals the INVERTi transform of A055099. - Gary W. Adamson, Aug 14 2010
From L. Edson Jeffery, Apr 04 2011: (Start)
Let U be the unit-primitive matrix (see [Jeffery])
U = U_(8,2) = (0 0 1 0)
(0 1 0 1)
(1 0 2 0)
(0 2 0 1).
Then a(n) = (1/4)*Trace(U^n). (See also A084130, A006012.)
(End)
For n >= 1, row sums of triangle
m/k.|..0.....1.....2.....3.....4.....5.....6.....7
==================================================
.0..|..1
.1..|..1.....2
.2..|..1.....2.....4
.3..|..1.....4.....4.....8
.4..|..1.....4....12.....8....16
.5..|..1.....6....12....32....16....32
.6..|..1.....6....24....32....80....32....64
.7..|..1.....8....24....80....80...192....64...128
which is the triangle for numbers 2^k*C(m,k) with duplicated diagonals. - Vladimir Shevelev, Apr 12 2012
a(n) is also the number of ways to place k non-attacking wazirs on a 2 X n board, summed over all k >= 0 (a wazir is a leaper [0,1]). - Vaclav Kotesovec, May 08 2012
The sequences a(n) and b(n) := A000129(n) are entries of powers of the special case of the Brahmagupta Matrix - for details see Suryanarayan's paper. Further, as Suryanarayan remark, if we set A = 2*(a(n) + b(n))*b(n), B = a(n)*(a(n) + 2*b(n)), C = a(n)^2 + 2*a(n)*b(n) + 2*b(n)^2 we obtain integral solutions of the Pythagorean relation A^2 + B^2 = C^2, where A and B are consecutive integers. - Roman Witula, Jul 28 2012
Pisano period lengths: 1, 1, 8, 4, 12, 8, 6, 4, 24, 12, 24, 8, 28, 6, 24, 8, 16, 24, 40, 12, .... - R. J. Mathar, Aug 10 2012
This sequence and A000129 give the diagonal numbers described by Theon of Smyrna. - Sture Sjöstedt, Oct 20 2012
a(n) is the top left entry of the n-th power of any of the following six 3 X 3 binary matrices: [1, 1, 1; 1, 1, 1; 1, 0, 0] or [1, 1, 1; 1, 1, 0; 1, 1, 0] or [1, 1, 1; 1, 0, 1; 1, 1, 0] or [1, 1, 1; 1, 1, 0; 1, 0, 1] or [1, 1, 1; 1, 0, 1; 1, 0, 1] or [1, 1, 1; 1, 0, 0; 1, 1, 1]. - R. J. Mathar, Feb 03 2014
If p is prime, a(p) == 1 (mod p) (compare with similar comment for A000032). - Creighton Dement, Oct 11 2005, modified by Davide Colazingari, Jun 26 2016
a(n) = A000129(n) + A000129(n-1), where A000129(n) is the n-th Pell Number; e.g., a(6) = 99 = A000129(6) + A000129(5) = 70 + 29. Hence the sequence of fractions has the form 1 + A000129(n-1)/A000129(n), and the ratio A000129(n-1)/A000129(n)converges to sqrt(2) - 1. - Gregory L. Simay, Nov 30 2018
For n > 0, a(n+1) is the length of tau^n(1) where tau is the morphism: 1 -> 101, 0 -> 1. See Song and Wu. - Michel Marcus, Jul 21 2020
For n > 0, a(n) is the number of nonisomorphic quasitrivial semigroups with n elements, see Devillet, Marichal, Teheux. A292932 is the number of labeled quasitrivial semigroups. - Peter Jipsen, Mar 28 2021
a(n) is the permanent of the n X n tridiagonal matrix defined in A332602. - Stefano Spezia, Apr 12 2022
From Greg Dresden, May 08 2023: (Start)
For n >= 2, 4*a(n) is the number of ways to tile this T-shaped figure of length n-1 with two colors of squares and one color of domino; shown here is the figure of length 5 (corresponding to n=6), and it has 4*a(6) = 396 different tilings.
_
|| _
|||_|||
|_|
(End)
12*a(n) = number of walks of length n in the cyclic Kautz digraph CK(3,4). - Miquel A. Fiol, Feb 15 2024

Examples

			Convergents are 1, 3/2, 7/5, 17/12, 41/29, 99/70, 239/169, 577/408, 1393/985, 3363/2378, 8119/5741, 19601/13860, 47321/33461, 114243/80782, ... = A001333/A000129.
The 15 3 X 2 crossword grids, with white squares represented by an o:
  ooo ooo ooo ooo ooo ooo ooo oo. o.o .oo o.. .o. ..o oo. .oo
  ooo oo. o.o .oo o.. .o. ..o ooo ooo ooo ooo ooo ooo .oo oo.
G.f. = 1 + x + 3*x^2 + 7*x^3 + 17*x^4 + 41*x^5 + 99*x^6 + 239*x^7 + 577*x^8 + ...
		

References

  • M. R. Bacon and C. K. Cook, Some properties of Oresme numbers and convolutions ..., Fib. Q., 62:3 (2024), 233-240.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 204.
  • John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.
  • J. Devillet, J.-L. Marichal, and B. Teheux, Classifications of quasitrivial semigroups, Semigroup Forum, 100 (2020), 743-764.
  • Maribel Díaz Noguera [Maribel Del Carmen Díaz Noguera], Rigoberto Flores, Jose L. Ramirez, and Martha Romero Rojas, Catalan identities for generalized Fibonacci polynomials, Fib. Q., 62:2 (2024), 100-111.
  • Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • R. P. Grimaldi, Ternary strings with no consecutive 0's and no consecutive 1's, Congressus Numerantium, 205 (2011), 129-149.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §8.5 The Fibonacci and Related Sequences, p. 288.
  • A. F. Horadam, R. P. Loh, and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
  • Thomas Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
  • Kin Y. Li, Math Problem Book I, 2001, p. 24, Problem 159.
  • I. Niven and H. S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 102, Problem 10.
  • J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. P. Stanley, Enumerative Combinatorics, Volume 1 (1986), p. 203, Example 4.1.2.
  • A. Tarn, Approximations to certain square roots and the series of numbers connected therewith, Mathematical Questions and Solutions from the Educational Times, 1 (1916), 8-12.
  • R. C. Tilley et al., The cell growth problem for filaments, Proc. Louisiana Conf. Combinatorics, ed. R. C. Mullin et al., Baton Rouge, 1970, 310-339.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 34.

Crossrefs

For denominators see A000129.
See A040000 for the continued fraction expansion of sqrt(2).
See also A078057 which is the same sequence without the initial 1.
Cf. also A002203, A152113.
Row sums of unsigned Chebyshev T-triangle A053120. a(n)= A054458(n, 0) (first column of convolution triangle).
Row sums of A140750, A160756, A135837.
Equals A034182(n-1) + 2 and A084128(n)/2^n. First differences of A052937. Partial sums of A052542. Pairwise sums of A048624. Bisection of A002965.
The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.
Second row of the array in A135597.
Cf. A055099.
Cf. A028859, A001906 / A088305, A033303, A000225, A095263, A003945, A006356, A002478, A214260, A001911 and A000217 for other restricted ternary words.
Cf. Triangle A106513 (alternating row sums).
Equals A293004 + 1.
Cf. A033539, A332602, A086395 (subseq. of primes).

Programs

  • Haskell
    a001333 n = a001333_list !! n
    a001333_list = 1 : 1 : zipWith (+)
                           a001333_list (map (* 2) $ tail a001333_list)
    -- Reinhard Zumkeller, Jul 08 2012
    
  • Magma
    [n le 2 select 1 else 2*Self(n-1)+Self(n-2): n in [1..35]]; // Vincenzo Librandi, Nov 10 2018
    
  • Maple
    A001333 := proc(n) option remember; if n=0 then 1 elif n=1 then 1 else 2*procname(n-1)+procname(n-2) fi end;
    Digits := 50; A001333 := n-> round((1/2)*(1+sqrt(2))^n);
    with(numtheory): cf := cfrac (sqrt(2),1000): [seq(nthnumer(cf,i), i=0..50)];
    a:= n-> (M-> M[2, 1]+M[2, 2])(<<2|1>, <1|0>>^n):
    seq(a(n), n=0..33);  # Alois P. Heinz, Aug 01 2008
    A001333List := proc(m) local A, P, n; A := [1,1]; P := [1,1];
    for n from 1 to m - 2 do P := ListTools:-PartialSums([op(A), P[-2]]);
    A := [op(A), P[-1]] od; A end: A001333List(32); # Peter Luschny, Mar 26 2022
  • Mathematica
    Insert[Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[2], n]]], {n, 1, 40}], 1, 1] (* Stefan Steinerberger, Apr 08 2006 *)
    Table[((1 - Sqrt[2])^n + (1 + Sqrt[2])^n)/2, {n, 0, 29}] // Simplify (* Robert G. Wilson v, May 02 2006 *)
    a[0] = 1; a[1] = 1; a[n_] := a[n] = 2a[n - 1] + a[n - 2]; Table[a@n, {n, 0, 29}] (* Robert G. Wilson v, May 02 2006 *)
    Table[ MatrixPower[{{1, 2}, {1, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, May 02 2006 *)
    a=c=0;t={b=1}; Do[c=a+b+c; AppendTo[t,c]; a=b;b=c,{n,40}]; t (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    LinearRecurrence[{2, 1}, {1, 1}, 40] (* Vladimir Joseph Stephan Orlovsky, Mar 23 2009 *)
    Join[{1}, Numerator[Convergents[Sqrt[2], 30]]] (* Harvey P. Dale, Aug 22 2011 *)
    Table[(-I)^n ChebyshevT[n, I], {n, 10}] (* Eric W. Weisstein, Apr 04 2017 *)
    CoefficientList[Series[(-1 + x)/(-1 + 2 x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    Table[Sqrt[(ChebyshevT[n, 3] + (-1)^n)/2], {n, 0, 20}] (* Eric W. Weisstein, Apr 17 2018 *)
  • PARI
    {a(n) = if( n<0, (-1)^n, 1) * contfracpnqn( vector( abs(n), i, 1 + (i>1))) [1, 1]}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    {a(n) = polchebyshev(n, 1, I) / I^n}; /* Michael Somos, Sep 02 2012 */
    
  • PARI
    a(n) = real((1 + quadgen(8))^n); \\ Michel Marcus, Mar 16 2021
    
  • PARI
    { for (n=0, 4000, a=contfracpnqn(vector(n, i, 1+(i>1)))[1, 1]; if (a > 10^(10^3 - 6), break); write("b001333.txt", n, " ", a); ); } \\ Harry J. Smith, Jun 12 2009
    
  • Python
    from functools import cache
    @cache
    def a(n): return 1 if n < 2 else 2*a(n-1) + a(n-2)
    print([a(n) for n in range(32)]) # Michael S. Branicky, Nov 13 2022
  • Sage
    from sage.combinat.sloane_functions import recur_gen2
    it = recur_gen2(1,1,2,1)
    [next(it) for i in range(30)] ## Zerinvary Lajos, Jun 24 2008
    
  • Sage
    [lucas_number2(n,2,-1)/2 for n in range(0, 30)] # Zerinvary Lajos, Apr 30 2009
    

Formula

a(n) = A055642(A125058(n)). - Reinhard Zumkeller, Feb 02 2007
a(n) = 2a(n-1) + a(n-2);
a(n) = ((1-sqrt(2))^n + (1+sqrt(2))^n)/2.
a(n)+a(n+1) = 2 A000129(n+1). 2*a(n) = A002203(n).
G.f.: (1 - x) / (1 - 2*x - x^2) = 1 / (1 - x / (1 - 2*x / (1 + x))). - Simon Plouffe in his 1992 dissertation.
A000129(2n) = 2*A000129(n)*a(n). - John McNamara, Oct 30 2002
a(n) = (-i)^n * T(n, i), with T(n, x) Chebyshev's polynomials of the first kind A053120 and i^2 = -1.
a(n) = a(n-1) + A052542(n-1), n>1. a(n)/A052542(n) converges to sqrt(1/2). - Mario Catalani (mario.catalani(AT)unito.it), Apr 29 2003
E.g.f.: exp(x)cosh(x*sqrt(2)). - Paul Barry, May 08 2003
a(n) = Sum_{k=0..floor(n/2)} binomial(n, 2k)2^k. - Paul Barry, May 13 2003
For n > 0, a(n)^2 - (1 + (-1)^(n))/2 = Sum_{k=0..n-1} ((2k+1)*A001653(n-1-k)); e.g., 17^2 - 1 = 288 = 1*169 + 3*29 + 5*5 + 7*1; 7^2 = 49 = 1*29 + 3*5 + 5*1. - Charlie Marion, Jul 18 2003
a(n+2) = A078343(n+1) + A048654(n). - Creighton Dement, Jan 19 2005
a(n) = A000129(n) + A000129(n-1) = A001109(n)/A000129(n) = sqrt(A001110(n)/A000129(n)^2) = ceiling(sqrt(A001108(n))). - Henry Bottomley, Apr 18 2000
Also the first differences of A000129 (the Pell numbers) because A052937(n) = A000129(n+1) + 1. - Graeme McRae, Aug 03 2006
a(n) = Sum_{k=0..n} A122542(n,k). - Philippe Deléham, Oct 08 2006
For another recurrence see A000129.
a(n) = Sum_{k=0..n} A098158(n,k)*2^(n-k). - Philippe Deléham, Dec 26 2007
a(n) = upper left and lower right terms of [1,1; 2,1]^n. - Gary W. Adamson, Mar 12 2008
If p[1]=1, and p[i]=2, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010
For n>=2, a(n)=F_n(2)+F_(n+1)(2), where F_n(x) is Fibonacci polynomial (cf. A049310): F_n(x) = Sum_{i=0..floor((n-1)/2)} binomial(n-i-1,i)x^(n-2*i-1). - Vladimir Shevelev, Apr 13 2012
a(-n) = (-1)^n * a(n). - Michael Somos, Sep 02 2012
Dirichlet g.f.: (PolyLog(s,1-sqrt(2)) + PolyLog(s,1+sqrt(2)))/2. - Ilya Gutkovskiy, Jun 26 2016
a(n) = A000129(n) - A000129(n-1), where A000129(n) is the n-th Pell Number. Hence the continued fraction is of the form 1-(A000129(n-1)/A000129(n)). - Gregory L. Simay, Nov 09 2018
a(n) = (A000129(n+3) + A000129(n-3))/10, n>=3. - Paul Curtz, Jun 16 2021
a(n) = (A000129(n+6) - A000129(n-6))/140, n>=6. - Paul Curtz, Jun 20 2021
a(n) = round((1/2)*sqrt(Product_{k=1..n} 4*(1 + sin(k*Pi/n)^2))), for n>=1. - Greg Dresden, Dec 28 2021
a(n)^2 + a(n+1)^2 = A075870(n+1) = 2*(b(n)^2 + b(n+1)^2) for all n in Z where b(n) := A000129(n). - Michael Somos, Apr 02 2022
a(n) = 2*A048739(n-2)+1. - R. J. Mathar, Feb 01 2024
Sum_{n>=1} 1/a(n) = 1.5766479516393275911191017828913332473... - R. J. Mathar, Feb 05 2024
From Peter Bala, Jul 06 2025: (Start)
G.f.: Sum_{n >= 1} (-1)^(n+1) * x^(n-1) * Product_{k = 1..n} (1 - k*x)/(1 - 3*x + k*x^2).
The following series telescope:
Sum_{n >= 1} (-1)^(n+1)/(a(2*n) + 1/a(2*n)) = 1/4, since 1/(a(2*n) + 1/a(2*n)) = 1/A077445(n) + 1/A077445(n+1).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) - 1/a(2*n+1)) = 1/8, since. 1/(a(2*n+1) - 1/a(2*n+1)) = 1/(4*Pell(2*n)) + 1/(4*Pell(2*n+2)), where Pell(n) = A000129(n).
Sum_{n >= 1} (-1)^(n+1)/(a(2*n+1) + 9/a(2*n+1)) = 1/10, since 1/(a(2*n+1) + 9/a(2*n+1)) = b(n) + b(n+1), where b(n) = A001109(n)/(2*Pell(2*n-1)*Pell(2*n+1)).
Sum_{n >= 1} (-1)^(n+1)/(a(n)*a(n+1)) = 1 - sqrt(2)/2 = A268682, since (-1)^(n+1)/(a(n)*a(n+1)) = Pell(n)/a(n) - Pell(n+1)/a(n+1). (End)

Extensions

Chebyshev comments from Wolfdieter Lang, Jan 10 2003

A001653 Numbers k such that 2*k^2 - 1 is a square.

Original entry on oeis.org

1, 5, 29, 169, 985, 5741, 33461, 195025, 1136689, 6625109, 38613965, 225058681, 1311738121, 7645370045, 44560482149, 259717522849, 1513744654945, 8822750406821, 51422757785981, 299713796309065, 1746860020068409, 10181446324101389, 59341817924539925
Offset: 1

Views

Author

Keywords

Comments

Consider all Pythagorean triples (X,X+1,Z) ordered by increasing Z; sequence gives Z values.
The defining equation is X^2 + (X+1)^2 = Z^2, which when doubled gives 2Z^2 = (2X+1)^2 + 1. So the sequence gives Z's such that 2Z^2 = odd square + 1 (A069894).
(x,y) = (a(n), a(n+1)) are the solutions with x < y of x/(yz) + y/(xz) + z/(xy)=3 with z=2. - Floor van Lamoen, Nov 29 2001
Consequently the sum n^2*(2n^2 - 1) of the first n odd cubes (A002593) is also a square. - Lekraj Beedassy, Jun 05 2002
Numbers n such that 2*n^2 = ceiling(sqrt(2)*n*floor(sqrt(2)*n)). - Benoit Cloitre, May 10 2003
Also, number of domino tilings in S_5 X P_2n. - Ralf Stephan, Mar 30 2004. Here S_5 is the star graph on 5 vertices with the edges {1,2}, {1,3}, {1,4}, {1,5}.
If x is in the sequence then so is x*(8*x^2-3). - James R. Buddenhagen, Jan 13 2005
In general, Sum_{k=0..n} binomial(2n-k,k)j^(n-k) = (-1)^n*U(2n,i*sqrt(j)/2), i=sqrt(-1). - Paul Barry, Mar 13 2005
a(n) = L(n,6), where L is defined as in A108299; see also A002315 for L(n,-6). - Reinhard Zumkeller, Jun 01 2005
Define a T-circle to be a first-quadrant circle with integral radius that is tangent to the x- and y-axes. Such a circle has coordinates equal to its radius. Let C(0) be the T-circle with radius 1. Then for n >0, define C(n) to be the largest T-circle that intersects C(n-1). C(n) has radius a(n) and the coordinates of its points of intersection with C(n-1) are A001108(n) and A055997(n). Cf. A001109. - Charlie Marion, Sep 14 2005
Number of 01-avoiding words of length n on alphabet {0,1,2,3,4,5} which do not end in 0. - Tanya Khovanova, Jan 10 2007
The lower principal convergents to 2^(1/2), beginning with 1/1, 7/5, 41/29, 239/169, comprise a strictly increasing sequence; numerators = A002315 and denominators = {a(n)}. - Clark Kimberling, Aug 26 2008
Apparently Ljunggren shows that 169 is the last square term.
If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q+1) are perfect squares. If (p,q) is a solution of the Diophantine equation: X^2 + (X+1)^2 = Y^2 then (p+q) or (p+q)/8 are perfect squares. If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X+1)^2 = Y^2 with p < r then s-r = p+q+1. - Mohamed Bouhamida, Aug 29 2009
If (p,q) and (r,s) are two consecutive solutions of the Diophantine equation: X^2 + (X + 1)^2 = Y^2 with p < r then r = 3p+2q+1 and s = 4p+3q+2. - Mohamed Bouhamida, Sep 02 2009
Equals INVERT transform of A005054: (1, 4, 20, 100, 500, 2500, ...) and INVERTi transform of A122074: (1, 6, 40, 268, 1796, ...). - Gary W. Adamson, Jul 22 2010
a(n) is the number of compositions of n when there are 5 types of 1 and 4 types of other natural numbers. - Milan Janjic, Aug 13 2010
The remainder after division of a(n) by a(k) appears to belong to a periodic sequence: 1, 5, ..., a(k-1), 0, a(k)-a(k-1), ..., a(k)-1, a(k)-1, ..., a(k)-a(k-1), 0, a(k-1), ..., 5, 1. See Bouhamida's Sep 01 2009 comment. - Charlie Marion, May 02 2011
Apart from initial 1: subsequence of A198389, see also A198385. - Reinhard Zumkeller, Oct 25 2011
(a(n+1), 2*b(n+1)) and (a(n+2), 2*b(n+1)), n >= 0, with b(n):= A001109(n), give the (u(2*n), v(2*n)) and (u(2*n+1), v(2*n+1)) sequences, respectively, for Pythagorean triples (x,y,z), where x=|u^2-v^2|, y=2*u*v and z=u^2+v^2, with u odd and v even, which are generated from (u(0)=1, v(0)=2) by the substitution rule (u,v) -> (2*v+u,v) if u < v and (u,v) -> (u,2*u+v) if u > v. This leads to primitive triples because gcd(u,v) = 1 is respected. This corresponds to (primitive) Pythagorean triangles with |x-y|=1 (the catheti differ by one length unit). This (u,v) sequence starts with (1,2), (5,2), (5,12), (29,12), (29,70) ... - Wolfdieter Lang, Mar 06 2012
Area of the Fibonacci snowflake of order n. - José Luis Ramírez Ramírez, Dec 13 2012
Area of the 3-generalized Fibonacci snowflake of order n, n >= 3. - José Luis Ramírez Ramírez, Dec 13 2012
For the o.g.f. given by Johannes W. Meijer, Aug 01 2010, in the formula section see a comment under A077445. - Wolfdieter Lang, Jan 18 2013
Positive values of x (or y) satisfying x^2 - 6xy + y^2 + 4 = 0. - Colin Barker, Feb 04 2014
Length of period of the continued fraction expansion of a(n)*sqrt(2) is 1, the corresponding repeating value is A077444(n). - Ralf Stephan, Feb 20 2014
Positive values of x (or y) satisfying x^2 - 34xy + y^2 + 144 = 0. - Colin Barker, Mar 04 2014
The value of the hypotenuse in each triple of the Tree of primitive Pythagorean triples (cf. Wikipedia link) starting with root (3,4,5) and recursively selecting the central branch at each triple node of the tree. - Stuart E Anderson, Feb 05 2015
Positive integers z such that z^2 is a centered square number (A001844). - Colin Barker, Feb 12 2015
The aerated sequence (b(n)) n >= 1 = [1, 0, 5, 0, 29, 0, 169, 0, ...] is a fourth-order linear divisibility sequence; that is, if n | m then b(n) | b(m). It is the case P1 = 0, P2 = -8, Q = 1 of the 3-parameter family of divisibility sequences found by Williams and Guy. See A100047 for the connection with Chebyshev polynomials. - Peter Bala, Mar 25 2015
A002315(n-1)/a(n) is the closest rational approximation of sqrt(2) with a denominator not larger than a(n). These rational approximations together with those obtained from the sequences A001541 and A001542 give a complete set of closest rational approximations of sqrt(2) with restricted numerator or denominator. A002315(n-1)/a(n) < sqrt(2). - A.H.M. Smeets, May 28 2017
Equivalently, numbers x such that (x-1)*x/2 + x*(x+1)/2 = y^2 + (y+1)^2. y-values are listed in A001652. Example: for x=29 and y=20, 28*29/2 + 29*30/2 = 20^2 + 21^2. - Bruno Berselli, Mar 19 2018
From Wolfdieter Lang, Jun 13 2018: (Start)
(a(n), a(n+1)), with a(0):= 1, give all proper positive solutions m1 = m1(n) and m2 = m2(n), with m1 < m2 and n >= 0, of the Markoff triple (m, m1, m2) (see A002559) for m = 2, i.e., m1^2 - 6*m1*m2 + m2^2 = -4. Hence the unique Markoff triple with largest value m = 2 is (1, 1, 2) (for general m from A002559 this is the famous uniqueness conjecture).
For X = m2 - m1 and Y = m2 this becomes the reduced indefinite quadratic form representation X^2 + 4*X*Y - 4*Y^2 = -4, with discriminant 32, and the only proper fundamental solution (X(0), Y(0)) = (0, 1). For all nonnegative proper (X(n), Y(n)) solutions see (A005319(n) = a(n+1) - a(n), a(n+1)), for n >= 0. (End)
Each Pell(2*k+1) = a(k+1) number with k >= 3 appears as largest number of an ordered Markoff (Markov) triple [x, y, m] with smallest value x = 2 as [2, Pell(2*k-1), Pell(2*k+1)]. This known result follows also from all positive proper solutions of the Pell equation q^2 - 2*m^2 = -1 which are q = q(k) = A002315(k) and m = m(k) = Pell(2*k+1), for k >= 0. y = y(k) = m(k) - 2*q(k) = Pell(2*k-1), with Pell(-1) = 1. The k = 0 and 1 cases do not satisfy x=2 <= y(k) <= m(k). The numbers 1 and 5 appear also as largest Markoff triple members because they are also Fibonacci numbers, and for these triples x=1. - Wolfdieter Lang, Jul 11 2018
All of the positive integer solutions of a*b+1=x^2, a*c+1=y^2, b*c+1=z^2, x+z=2*y, 0 < a < b < c are given by a=A001542(n), b=A005319(n), c=A001542(n+1), x=A001541(n), y=a(n+1), z=A002315(n) with 0 < n. - Michael Somos, Jun 26 2022

Examples

			From _Muniru A Asiru_, Mar 19 2018: (Start)
For k=1, 2*1^2 - 1 = 2 - 1 = 1 = 1^2.
For k=5, 2*5^2 - 1 = 50 - 1 = 49 = 7^2.
For k=29, 2*29^2 - 1 = 1682 - 1 = 1681 = 41^2.
... (End)
G.f. = x + 5*x^2 + 29*x^3 + 169*x^4 + 985*x^5 + 5741*x^6 + ... - _Michael Somos_, Jun 26 2022
		

References

  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, pp. 122-125, 1964.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 188.
  • W. Ljunggren, "Zur Theorie der Gleichung x^2+1=Dy^4", Avh. Norske Vid. Akad. Oslo I. 5, 27pp.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • P.-F. Teilhet, Query 2376, L'Intermédiaire des Mathématiciens, 11 (1904), 138-139. - N. J. A. Sloane, Mar 08 2022
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers (Rev. ed. 1997), p. 91.

Crossrefs

Other two sides are A001652, A046090.
Cf. A001519, A001109, A005054, A122074, A056220, A056869 (subset of primes).
Row 6 of array A094954.
Row 1 of array A188647.
Cf. similar sequences listed in A238379.

Programs

  • GAP
    a:=[1,5];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # Muniru A Asiru, Mar 19 2018
  • Haskell
    a001653 n = a001653_list !! n
    a001653_list = 1 : 5 : zipWith (-) (map (* 6) $ tail a001653_list) a001653_list
    -- Reinhard Zumkeller, May 07 2013
    
  • Magma
    I:=[1,5]; [n le 2 select I[n] else 6*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Feb 22 2014
    
  • Maple
    a[0]:=1: a[1]:=5: for n from 2 to 26 do a[n]:=6*a[n-1]-a[n-2] od: seq(a[n], n=0..20); # Zerinvary Lajos, Jul 26 2006
    A001653:=-(-1+5*z)/(z**2-6*z+1); # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation; gives sequence except for one of the leading 1's
  • Mathematica
    LinearRecurrence[{6,-1}, {1,5}, 40] (* Harvey P. Dale, Jul 12 2011 *)
    a[ n_] := -(-1)^n ChebyshevU[2 n - 2, I]; (* Michael Somos, Jul 22 2018 *)
    Numerator[{1} ~Join~
    Table[FromContinuedFraction[Flatten[Table[{1, 4}, n]]], {n, 1, 40}]]; (* Greg Dresden, Sep 10 2019 *)
  • PARI
    {a(n) = subst(poltchebi(n-1) + poltchebi(n), x, 3)/4}; /* Michael Somos, Nov 02 2002 */
    
  • PARI
    a(n)=([5,2;2,1]^(n-1))[1,1] \\ Lambert Klasen (lambert.klasen(AT)gmx.de), corrected by Eric Chen, Jun 14 2018
    
  • PARI
    {a(n) = -(-1)^n * polchebyshev(2*n-2, 2, I)}; /* Michael Somos, Jun 26 2022 */
    

Formula

G.f.: x*(1-x)/(1-6*x+x^2).
a(n) = 6*a(n-1) - a(n-2) with a(1)=1, a(2)=5.
4*a(n) = A077445(n).
Can be extended backwards by a(-n+1) = a(n).
a(n) = sqrt((A002315(n)^2 + 1)/2). [Inserted by N. J. A. Sloane, May 08 2000]
a(n+1) = S(n, 6)-S(n-1, 6), n>=0, with S(n, 6) = A001109(n+1), S(-2, 6) := -1. S(n, x)=U(n, x/2) are Chebyshev's polynomials of the second kind. Cf. triangle A049310. a(n+1) = T(2*n+1, sqrt(2))/sqrt(2), n>=0, with T(n, x) Chebyshev's polynomials of the first kind. [Offset corrected by Wolfdieter Lang, Mar 06 2012]
a(n) = A000129(2n+1). - Ira M. Gessel, Sep 27 2002
a(n) ~ (1/4)*sqrt(2)*(sqrt(2) + 1)^(2*n+1). - Joe Keane (jgk(AT)jgk.org), May 15 2002
a(n) = (((3 + 2*sqrt(2))^(n+1) - (3 - 2*sqrt(2))^(n+1)) - ((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n)) / (4*sqrt(2)). Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 12 2002
Let q(n, x) = Sum_{i=0..n} x^(n-i)*binomial(2*n-i, i); then q(n, 4) = a(n). - Benoit Cloitre, Nov 10 2002
For n and j >= 1, Sum_{k=0..j} a(k)*a(n) - Sum_{k=0..j-1} a(k)*a(n-1) = A001109(j+1)*a(n) - A001109(j)*a(n-1) = a(n+j); e.g., (1+5+29)*5 - (1+5)*1=169. - Charlie Marion, Jul 07 2003
From Charlie Marion, Jul 16 2003: (Start)
For n >= k >= 0, a(n)^2 = a(n+k)*a(n-k) - A084703(k)^2; e.g., 169^2 = 5741*5 - 144.
For n > 0, a(n) ^2 - a(n-1)^2 = 4*Sum_{k=0..2*n-1} a(k) = 4*A001109(2n); e.g., 985^2 - 169^2 = 4*(1 + 5 + 29 + ... + 195025) = 4*235416.
Sum_{k=0..n} ((-1)^(n-k)*a(k)) = A079291(n+1); e.g., -1 + 5 - 29 + 169 = 144.
A001652(n) + A046090(n) - a(n) = A001542(n); e.g., 119 + 120 - 169 = 70.
(End)
Sum_{k=0...n} ((2k+1)*a(n-k)) = A001333(n+1)^2 - (1 + (-1)^(n+1))/2; e.g., 1*169 + 3*29 + 5*5 + 7*1 = 288 = 17^2 - 1; 1*29 + 3*5 + 5*1 = 49 = 7^2. - Charlie Marion, Jul 18 2003
Sum_{k=0...n} a(k)*a(n) = Sum_{k=0..n} a(2k) and Sum_{k=0..n} a(k)*a(n+1) = Sum_{k=0..n} a(2k+1); e.g., (1+5+29)*29 = 1+29+985 and (1+5+29)*169 = 5+169+5741. - Charlie Marion, Sep 22 2003
For n >= 3, a_{n} = 7(a_{n-1} - a_{n-2}) + a_{n-3}, with a_1 = 1, a_2 = 5 and a_3 = 29. a(n) = ((-1+2^(1/2))/2^(3/2))*(3 - 2^(3/2))^n + ((1+2^(1/2))/2^(3/2))*(3 + 2^(3/2))^n. - Antonio Alberto Olivares, Oct 13 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for k > j, c(i)*(c(k) - c(j)) = a(k+i) + ... + a(i+j+1) + a(k-i-1) + ... + a(j-i) + k - j. For n < 0, a(n) = -b(-n-1). Also a(n)*a(n+2k+1) + b(n)*b(n+2k+1) + c(n)*c(n+2k+1) = (a(n+k+1) - a(n+k))^2; a(n)*a(n+2k) + b(n)*b(n+2k) + c(n)*c(n+2k) = 2*c(n+k)^2. - Charlie Marion, Jul 01 2003
Let a(n) = A001652(n), b(n) = A046090(n) and c(n) = this sequence. Then for n > 0, a(n)*b(n)*c(n)/(a(n)+b(n)+c(n)) = Sum_{k=0..n} c(2*k+1); e.g., 20*21*29/(20+21+29) = 5+169 = 174; a(n)*b(n)*c(n)/(a(n-1)+b(n-1)+c(n-1)) = Sum_{k=0..n} c(2*k); e.g., 119*120*169/(20+21+29) = 1+29+985+33461 = 34476. - Charlie Marion, Dec 01 2003
Also solutions x > 0 of the equation floor(x*r*floor(x/r))==floor(x/r*floor(x*r)) where r=1+sqrt(2). - Benoit Cloitre, Feb 15 2004
a(n)*a(n+3) = 24 + a(n+1)*a(n+2). - Ralf Stephan, May 29 2004
For n >= k, a(n)*a(n+2*k+1) - a(n+k)*a(n+k+1) = a(k)^2-1; e.g., 29*195025-985*5741 = 840 = 29^2-1; 1*169-5*29 = 24 = 5^2-1; a(n)*a(n+2*k)-a(n+k)^2 = A001542(k)^2; e.g., 169*195025-5741^2 = 144 = 12^2; 1*29-5^2 = 4 = 2^2. - Charlie Marion Jun 02 2004
For all k, a(n) is a factor of a((2n+1)*k+n). a((2*n+1)*k+n) = a(n)*(Sum_{j=0..k-1} (-1)^j*(a((2*n+1)*(k-j)) + a((2*n+1)*(k-j)-1))+(-1)^k); e.g., 195025 = 5*(33461+5741-169-29+1); 7645370045 = 169*(6625109+1136689-1).- Charlie Marion, Jun 04 2004
a(n) = Sum_{k=0..n} binomial(n+k, 2*k)4^k. - Paul Barry, Aug 30 2004 [offset 0]
a(n) = Sum_{k=0..n} binomial(2*n+1, 2*k+1)*2^k. - Paul Barry, Sep 30 2004 [offset 0]
For n < k, a(n)*A001541(k) = A011900(n+k)+A053141(k-n-1); e.g., 5*99 = 495 = 493+2. For n >= k, a(n)*A001541(k) = A011900(n+k)+A053141(n-k); e.g., 29*3 = 87 = 85+2. - Charlie Marion, Oct 18 2004
a(n) = (-1)^n*U(2*n, i*sqrt(4)/2) = (-1)^n*U(2*n, i), U(n, x) Chebyshev polynomial of second kind, i=sqrt(-1). - Paul Barry, Mar 13 2005 [offset 0]
a(n) = Pell(2*n+1) = Pell(n)^2 + Pell(n+1)^2. - Paul Barry, Jul 18 2005 [offset 0]
a(n)*a(n+k) = A000129(k)^2 + A000129(2n+k+1)^2; e.g., 29*5741 = 12^2+169^2. - Charlie Marion, Aug 02 2005
Let a(n)*a(n+k) = x. Then 2*x^2-A001541(k)*x+A001109(k)^2 = A001109(2*n+k+1)^2; e.g., let x=29*985; then 2x^2-17x+6^2 = 40391^2; cf. A076218. - Charlie Marion, Aug 02 2005
With a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = (a^((2n+1)/2)+b^((2n+1)/2))/(2*sqrt(2)). a(n) = A001109(n+1)-A001109(n). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
If k is in the sequence, then the next term is floor(k*(3+2*sqrt(2))). - Lekraj Beedassy, Jul 19 2005
a(n) = Jacobi_P(n,-1/2,1/2,3)/Jacobi_P(n,-1/2,1/2,1). - Paul Barry, Feb 03 2006 [offset 0]
a(n) = Sum_{k=0..n} Sum_{j=0..n-k} C(n,j)*C(n-j,k)*Pell(n-j+1), where Pell = A000129. - Paul Barry, May 19 2006 [offset 0]
a(n) = round(sqrt(A002315(n)^2/2)). - Lekraj Beedassy, Jul 15 2006
a(n) = A079291(n) + A079291(n+1). - Lekraj Beedassy, Aug 14 2006
a(n+1) = 3*a(n) + sqrt(8*a(n)^2-4), a(1)=1. - Richard Choulet, Sep 18 2007
6*a(n)*a(n+1) = a(n)^2+a(n+1)^2+4; e.g., 6*5*29 = 29^2+5^2+4; 6*169*985 = 169^2+985^2+4. - Charlie Marion, Oct 07 2007
2*A001541(k)*a(n)*a(n+k) = a(n)^2+a(n+k)^2+A001542(k)^2; e.g., 2*3*5*29 = 5^2+29^2+2^2; 2*99*29*5741 = 2*99*29*5741=29^2+5741^2+70^2. - Charlie Marion, Oct 12 2007
[a(n), A001109(n)] = [1,4; 1,5]^n * [1,0]. - Gary W. Adamson, Mar 21 2008
From Charlie Marion, Apr 10 2009: (Start)
In general, for n >= k, a(n+k) = 2*A001541(k)*a(n)-a(n-k);
e.g., a(n+0) = 2*1*a(n)-a(n); a(n+1) = 6*a(n)-a(n-1); a(6+0) = 33461 = 2*33461-33461; a(5+1) = 33461 = 6*5741-985; a(4+2) = 33461 = 34*985-29; a(3+3) = 33461 = 198*169-1.
(End)
G.f.: sqrt(x)*tan(4*arctan(sqrt(x)))/4. - Johannes W. Meijer, Aug 01 2010
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = a(n-1)*k-((k-1)/(k^n)). - Charles L. Hohn, Mar 06 2011
Given k = (sqrt(2)+1)^2 = 3+2*sqrt(2) and a(0)=1, then a(n) = (k^n)+(k^(-n))-a(n-1) = A003499(n) - a(n-1). - Charles L. Hohn, Apr 04 2011
Let T(n) be the n-th triangular number; then, for n > 0, T(a(n)) + A001109(n-1) = A046090(n)^2. See also A046090. - Charlie Marion, Apr 25 2011
For k > 0, a(n+2*k-1) - a(n) = 4*A001109(n+k-1)*A002315(k-1); a(n+2*k) - a(n) = 4*A001109(k)*A002315(n+k-1). - Charlie Marion, Jan 06 2012
a(k+j+1) = (A001541(k)*A001541(j) + A002315(k)*A002315(j))/2. - Charlie Marion, Jun 25 2012
a(n)^2 = 2*A182435(n)*(A182435(n)-1)+1. - Bruno Berselli, Oct 23 2012
a(n) = A143608(n-1)*A143608(n) + 1 = A182190(n-1)+1. - Charlie Marion, Dec 11 2012
G.f.: G(0)*(1-x)/(2-6*x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
a(n+1) = 4*A001652(n) + 3*a(n) + 2 [Mohamed Bouhamida's 2009 (p,q)(r,s) comment above rewritten]. - Hermann Stamm-Wilbrandt, Jul 27 2014
a(n)^2 = A001652(n-1)^2 + (A001652(n-1)+1)^2. - Hermann Stamm-Wilbrandt, Aug 31 2014
Sum_{n >= 2} 1/( a(n) - 1/a(n) ) = 1/4. - Peter Bala, Mar 25 2015
a(n) = Sum_{k=0..n} binomial(n,k) * 3^(n-k) * 2^k * 2^floor(k/2). - David Pasino, Jul 09 2016
E.g.f.: (sqrt(2)*sinh(2*sqrt(2)*x) + 2*cosh(2*sqrt(2)*x))*exp(3*x)/2. - Ilya Gutkovskiy, Jul 09 2016
a(n+2) = (a(n+1)^2 + 4)/a(n). - Vladimir M. Zarubin, Sep 06 2016
a(n) = 2*A053141(n)+1. - R. J. Mathar, Aug 16 2019
For n>1, a(n) is the numerator of the continued fraction [1,4,1,4,...,1,4] with (n-1) repetitions of 1,4. For the denominators see A005319. - Greg Dresden, Sep 10 2019
a(n) = round(((2+sqrt(2))*(3+2*sqrt(2))^(n-1))/4). - Paul Weisenhorn, May 23 2020
a(n+1) = Sum_{k >= n} binomial(2*k,2*n)*(1/2)^(k+1). Cf. A102591. - Peter Bala, Nov 29 2021
a(n+1) = 3*a(n) + A077444(n). - César Aguilera, Jul 13 2023

Extensions

Additional comments from Wolfdieter Lang, Feb 10 2000
Better description from Harvey P. Dale, Jan 15 2002
Edited by N. J. A. Sloane, Nov 02 2002

A003499 a(n) = 6*a(n-1) - a(n-2), with a(0) = 2, a(1) = 6.

Original entry on oeis.org

2, 6, 34, 198, 1154, 6726, 39202, 228486, 1331714, 7761798, 45239074, 263672646, 1536796802, 8957108166, 52205852194, 304278004998, 1773462177794, 10336495061766, 60245508192802, 351136554095046, 2046573816377474, 11928306344169798, 69523264248641314
Offset: 0

Views

Author

Keywords

Comments

Two times Chebyshev polynomials of the first kind evaluated at 3.
Also 2(a(2*n)-2) and a(2*n+1)-2 are perfect squares. - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Chebyshev polynomials of the first kind evaluated at 3, then multiplied by 2. - Michael Somos, Apr 07 2003
Also gives solutions > 2 to the equation x^2 - 3 = floor(x*r*floor(x/r)) where r=sqrt(2). - Benoit Cloitre, Feb 14 2004
Output of Lu and Wu's formula for the number of perfect matchings of an m X n Klein bottle where m and n are both even specializes to this sequence for m=2. - Sarah-Marie Belcastro, Jul 04 2009
It appears that for prime P = 8*n +- 3, that a((P-1)/2) == -6 (mod P) and for all composites C = 8*n +- 3, there is at least one i < (C-1)/2 such that a(i) == -6 (mod P). Only a few of the primes P of the form 8*n +-3, e.g., 29, had such an i less than (P-1)/2. As for primes P = 8*n +- 1, it seems that the sum of the two adjacent terms, a((P-1)/2) and a((P+1)/2), is congruent to 8 (mod P). - Kenneth J Ramsey, Feb 14 2012 and Mar 05 2012
For n >= 1, a(n) is also the curvature of circles (rounded to the nearest integer) successively inscribed toward angle 90 degree of tangent lines, starting with a unit circle. The expansion factor is 5.828427... or 1/(3 - 2*sqrt(2)), which is also 3 + 2*sqrt(2) or A156035. See illustration in links. - Kival Ngaokrajang, Sep 04 2013
Except for the first term, positive values of x (or y) satisfying x^2 - 6*x*y + y^2 + 32 = 0. - Colin Barker, Feb 08 2014

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 198.
  • Jay Kappraff, Beyond Measure, A Guided Tour Through Nature, Myth and Number, World Scientific, 2002; pp. 480-481.
  • Thomas Koshy, Fibonacci and Lucas Numbers with Applications, 2001, Wiley, pp. 77-79.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A081555(n) = 1 + a(n).
Bisection of A002203.
First row of array A103999.
Row 1 * 2 of array A188645. A174501.

Programs

  • GAP
    a:=[2,6];; for n in [3..25] do a[n]:=6*a[n-1]-a[n-2]; od; a; # G. C. Greubel, Jan 16 2020
  • Magma
    I:=[2,6]; [n le 2 select I[n] else 6*Self(n-1) -Self(n-2): n in [1..25]]; // G. C. Greubel, Jan 16 2020
    
  • Magma
    R:=PowerSeriesRing(Integers(), 25); Coefficients(R!( (2-6*x)/(1 - 6*x + x^2) )); // Marius A. Burtea, Jan 16 2020
    
  • Maple
    A003499:=-2*(-1+3*z)/(1-6*z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    a[0]=2; a[1]=6; a[n_]:= 6a[n-1] -a[n-2]; Table[a[n], {n,0,25}] (* Robert G. Wilson v, Jan 30 2004 *)
    Table[Tr[MatrixPower[{{6, -1}, {1, 0}}, n]], {n, 25}] (* Artur Jasinski, Apr 22 2008 *)
    LinearRecurrence[{6, -1}, {2, 6}, 25] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2012 *)
    CoefficientList[Series[(2-6x)/(1-6x+x^2), {x,0,25}], x] (* Vincenzo Librandi, Jun 07 2013 *)
    (* From Eric W. Weisstein, Apr 17 2018 *)
    Table[(3-2Sqrt[2])^n + (3+2Sqrt[2])^n, {n,0,25}]//Expand
    Table[(1+Sqrt[2])^(2n) + (1-Sqrt[2])^(2n), {n,0,25}]//FullSimplify
    Join[{2}, Table[Fibonacci[4n, 2]/Fibonacci[2n, 2], {n, 25}]]
    2*ChebyshevT[Range[0, 25], 3] (* End *)
  • PARI
    a(n)=2*real((3+quadgen(32))^n)
    
  • PARI
    a(n)=2*subst(poltchebi(abs(n)),x,3)
    
  • PARI
    a(n)=if(n<0,a(-n),polsym(1-6*x+x^2,n)[n+1])
    
  • Sage
    [lucas_number2(n,6,1) for n in range(37)] # Zerinvary Lajos, Jun 25 2008
    

Formula

G.f.: (2-6*x)/(1 - 6*x + x^2).
a(n) = (3+2*sqrt(2))^n + (3-2*sqrt(2))^n = 2*A001541(n).
For all sequence elements n, 2*n^2 - 8 is a perfect square. Limit_{n->infinity} a(n)/a(n-1) = 3 + 2*sqrt(2). - Gregory V. Richardson, Oct 06 2002
a(2*n)+2 is a perfect square, 2(a(2*n+1)+2) is a perfect square. a(n), a(n-1) and A077445(n), n > 0, satisfy the Diophantine equation x^2 + y^2 - 3*z^2 = -8. - Mario Catalani (mario.catalani(AT)unito.it), Mar 24 2003
a(n+1) is the trace of n-th power of matrix {{6, -1}, {1, 0}}. - Artur Jasinski, Apr 22 2008
a(n) = Product_{r=1..n} (4*sin^2((4*r-1)*Pi/(4*n)) + 4). [Lu/Wu] - Sarah-Marie Belcastro, Jul 04 2009
a(n) = (1 + sqrt(2))^(2*n) + (1 + sqrt(2))^(-2*n). - Gerson Washiski Barbosa, Sep 19 2010
For n > 0, a(n) = A001653(n) + A001653(n+1). - Charlie Marion, Dec 27 2011
For n > 0, a(n) = b(4*n)/b(2*n) where b(n) is the Pell sequence, A000129. - Kenneth J Ramsey, Feb 14 2012
From Peter Bala, Jan 06 2013: (Start)
Let F(x) = Product_{n >= 0} (1 + x^(4*n+1))/(1 + x^(4*n+3)). Let alpha = 3 - 2*sqrt(2). This sequence gives the simple continued fraction expansion of 1 + F(alpha) = 2.16585 37786 96882 80543 ... = 2 + 1/(6 + 1/(34 + 1/(198 + ...))). Cf. A174501.
Also F(-alpha) = 0.83251219269380007634 ... has the continued fraction representation 1 - 1/(6 - 1/(34 - 1/(198 - ...))) and the simple continued fraction expansion 1/(1 + 1/((6-2) + 1/(1 + 1/((34-2) + 1/(1 + 1/((198-2) + 1/(1 + ...))))))). Cf. A174501 and A003500.
F(alpha)*F(-alpha) has the simple continued fraction expansion 1/(1 + 1/((6^2-4) + 1/(1 + 1/((34^2-4) + 1/(1 + 1/((198^2-4) + 1/(1 + ...))))))).
(End)
G.f.: G(0), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
Inverse binomial transform of A228568 [Bhadouria]. - R. J. Mathar, Nov 10 2013
From Peter Bala, Oct 16 2019: (Start)
4*Sum_{n >= 1} 1/(a(n) - 8/a(n)) = 1.
8*Sum_{n >= 1} (-1)^(n+1)/(a(n) + 4/a(n)) = 1.
Series acceleration formulas for sum of reciprocals:
Sum_{n >= 1} 1/a(n) = 1/4 - 8*Sum_{n >= 1} 1/(a(n)*(a(n)^2 - 8)) and
Sum_{n >= 1} (-1)^(n+1)/a(n) = 1/8 + 4*Sum_{n >= 1} (-1)^(n+1)/(a(n)*(a(n)^2 + 4)).
Sum_{n >= 1} 1/a(n) = ( (theta_3(3-2*sqrt(2)))^2 - 1 )/4 and
Sum_{n >= 1} (-1)^(n+1)/a(n) = ( 1 - (theta_3(2*sqrt(2)-3))^2 )/4, where theta_3(x) = 1 + 2*Sum_{n >= 1} x^(n^2) (see A000122). Cf. A153415 and A067902.
(End)
E.g.f.: 2*exp(3*x)*cosh(2*sqrt(2)*x). - Stefano Spezia, Oct 18 2019
a(2*n)+2 = a(n)^2. - Greg Dresden and Shraya Pal, Jun 29 2021

A077444 Numbers k such that (k^2 + 4)/2 is a square.

Original entry on oeis.org

2, 14, 82, 478, 2786, 16238, 94642, 551614, 3215042, 18738638, 109216786, 636562078, 3710155682, 21624372014, 126036076402, 734592086398, 4281516441986, 24954506565518, 145445522951122, 847718631141214, 4940866263896162, 28797478952235758, 167844007449518386
Offset: 1

Views

Author

Gregory V. Richardson, Nov 09 2002

Keywords

Comments

The equation "(k^2 + 4)/2 is a square" is a version of the generalized Pell Equation x^2 - D*y^2 = C where x^2 - 2*y^2 = -4.
Sequence of all positive integers k such that continued fraction [k,k,k,k,k,k,...] belongs to Q(sqrt(2)). - Thomas Baruchel, Sep 15 2003
Equivalently, 2*n^2 + 8 is a square.
Numbers n such that (ceiling(sqrt(n*n/2)))^2 = 2 + n^2/2. - Ctibor O. Zizka, Nov 09 2009
The continued fraction [a(n);a(n),a(n),...] = (1 + sqrt(2))^(2*n-1). - Thomas Ordowski, Jun 07 2013
a((p+1)/2) == 2 (mod p) where p is an odd prime. - Altug Alkan, Mar 17 2016

References

  • A. H. Beiler, "The Pellian." Ch. 22 in Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. Dover, New York, New York, pp. 248-268, 1966.
  • L. E. Dickson, History of the Theory of Numbers, Vol. II, Diophantine Analysis. AMS Chelsea Publishing, Providence, Rhode Island, 1999, pp. 341-400.
  • Peter G. L. Dirichlet, Lectures on Number Theory (History of Mathematics Source Series, V. 16); American Mathematical Society, Providence, Rhode Island, 1999, pp. 139-147.

Crossrefs

(A077445(n))^2 - 2*a(n) = 8.
First differences of A001541.
Pairwise sums of A001542.
Bisection of A002203 and A080039.
Cf. A001653.

Programs

  • Magma
    [n: n in [0..10^8] | IsSquare((n^2 + 4) div 2)]; // Vincenzo Librandi, Jun 20 2015
  • Mathematica
    LinearRecurrence[{6,-1},{2,14},30] (* Harvey P. Dale, Jul 25 2018 *)
  • PARI
    for(n=1,20,q=(1+sqrt(2))^(2*n-1);print1(contfrac(q)[1],", ")) \\ Derek Orr, Jun 18 2015
    
  • PARI
    Vec(2*x*(1+x)/(1-6*x+x^2) + O(x^100)) \\ Altug Alkan, Mar 17 2016
    

Formula

a(n) = (((3 + 2*sqrt(2))^n - (3 - 2*sqrt(2))^n) + ((3 + 2*sqrt(2))^(n-1) - (3 - 2*sqrt(2))^(n-1))) / (2*sqrt(2)).
a(n) = 2*A002315(n-1).
Recurrence: a(n) = 6*a(n-1) - a(n-2), starting 2, 14.
Offset 0, with a=3+2*sqrt(2), b=3-2*sqrt(2): a(n) = a^((2n+1)/2) - b^((2n+1)/2). a(n) = 2*(A001109(n+1) + A001109(n)) = (A003499(n+1) - A003499(n))/2 = 2*sqrt(A001108(2n+1)) = sqrt(A003499(2n+1)-2). - Mario Catalani (mario.catalani(AT)unito.it), Mar 31 2003
Limit_{n->oo} a(n)/a(n-1) = 5.82842712474619009760... = 3 + 2*sqrt(2). See A156035.
From R. J. Mathar, Nov 16 2007: (Start)
G.f.: 2*x*(1+x)/(1-6*x+x^2).
a(n) = 2*(7*A001109(n) - A001109(n+1)). (End)
a(n) = (1+sqrt(2))^(2*n-1) - (1+sqrt(2))^(1-2*n). - Gerson Washiski Barbosa, Sep 19 2010
a(n) = floor((1 + sqrt(2))^(2*n-1)). - Thomas Ordowski, Jun 07 2013
a(n) = sqrt(2*A075870(n)^2-4). - Derek Orr, Jun 18 2015
a(n) = 2*sqrt((2*A001653(n)^2)-1). - César Aguilera, Jul 13 2023
E.g.f.: 2*(1 + exp(3*x)*(sqrt(2)*sinh(2*sqrt(2)*x) - cosh(2*sqrt(2)*x))). - Stefano Spezia, Aug 27 2024

A101386 Expansion of g.f.: (5 - 3*x)/(1 - 6*x + x^2).

Original entry on oeis.org

5, 27, 157, 915, 5333, 31083, 181165, 1055907, 6154277, 35869755, 209064253, 1218515763, 7102030325, 41393666187, 241259966797, 1406166134595, 8195736840773, 47768254910043, 278413792619485, 1622714500806867, 9457873212221717, 55124524772523435, 321289275422918893
Offset: 0

Views

Author

Creighton Dement, Jan 23 2005

Keywords

Comments

A floretion-generated sequence relating to NSW numbers and numbers n such that (n^2 - 8)/2 is a square. It is also possible to label this sequence as the "tesfor-transform of the zero-sequence" under the floretion given in the program code, below. This is because the sequence "vesseq" would normally have been A046184 (indices of octagonal numbers which are also a square) using the floretion given. This floretion, however, was purposely "altered" in such a way that the sequence "vesseq" would turn into A000004. As (a(n)) would not have occurred under "natural" circumstances, one could speak of it as the transform of A000004.
Floretion Algebra Multiplication Program FAMP code: - tesforseq[ + 3'i - 2'j + 'k + 3i' - 2j' + k' - 4'ii' - 3'jj' + 4'kk' - 'ij' - 'ji' + 3'jk' + 3'kj' + 4e], Note: vesforseq = A000004, lesforseq = A002315, jesforseq = A077445
From Wolfdieter Lang, Feb 05 2015: (Start)
All positive solutions x = a(n) of the (generalized) Pell equation x^2 - 2*y^2 = +7 based on the fundamental solution (x2,y2) = (5,3) of the second class of (proper) solutions. The corresponding y solutions are given by y(n) = A253811(n).
All other positive solutions come from the first class of (proper) solutions based on the fundamental solution (x1,y1) = (3,1). These are given in A038762 and A038761.
All solutions of this Pell equation are found in A077443(n+1) and A077442(n), for n >= 0. See, e.g., the Nagell reference on how to find all solutions.
(End)

References

  • T. Nagell, Introduction to Number Theory, Chelsea Publishing Company, 1964, Theorem 109, pp. 207-208 with Theorem 104, pp. 197-198.

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!((5 - 3*x)/(1-6*x+x^2))); // G. C. Greubel, Jul 26 2018
    
  • Maple
    A101386:= (n) -> simplify(5*ChebyshevU(n, 3) - 3*ChebyshevU(n-1, 3)); seq( A101386(n), n = 0..30); # G. C. Greubel, Mar 17 2020
  • Mathematica
    CoefficientList[ Series[(5-3x)/(1-6x+x^2), {x,0,30}], x] (* Robert G. Wilson v, Jan 29 2005 *)
    LinearRecurrence[{6,-1},{5,27},30] (* Harvey P. Dale, Apr 23 2016 *)
  • PARI
    Vec((5-3*x)/(1-6*x+x^2) + O(x^30)) \\ Colin Barker, Feb 05 2015
    
  • SageMath
    [5*chebyshev_U(n,3) -3*chebyshev_U(n-1,3) for n in (0..30)] # G. C. Greubel, Mar 17 2020

Formula

a(n) = A002315(n) + A077445(n+1). Note: the offset of A077445 is 1.
a(n+1) - a(n) = 2*A054490(n+1).
a(n) = 6*a(n-1) - a(n-2), a(0)=5, a(1)=27. - Philippe Deléham, Nov 17 2008
From Al Hakanson (hawkuu(AT)gmail.com), Aug 17 2009: (Start)
a(n) = ((5+sqrt(18))*(3 + sqrt(8))^n + (5-sqrt(18))*(3 - sqrt(8))^n)/2.
Third binomial transform of A164737. (End)
a(n) = rational part of z(n), with z(n) = (5+3*sqrt(2))*(3+2*sqrt(2))^n, n >= 0, the general positive solutions of the second class of proper solutions. See the preceding formula. - Wolfdieter Lang, Feb 05 2015
a(n) = 5*A001109(n+1) - 3*A001109(n). - G. C. Greubel, Mar 17 2020
a(n) = Pell(2*n+2) + 3*Pell(2*n+1), where Pell(n) = A000129(n). - G. C. Greubel, Apr 17 2020
E.g.f.: exp(3*x)*(5*cosh(2*sqrt(2)*x) + 3*sqrt(2)*sinh(2*sqrt(2)*x)). - Stefano Spezia, Mar 16 2024

Extensions

More terms from Robert G. Wilson v, Jan 29 2005

A220673 Coefficients of formal series in powers of (tan(x))^2 for tan(5*x)/tan(x).

Original entry on oeis.org

5, 40, 376, 3560, 33720, 319400, 3025400, 28657000, 271443000, 2571145000, 24354235000, 230686625000, 2185095075000, 20697517625000, 196049700875000, 1857009420625000, 17589845701875000, 166613409915625000, 1578184870646875000
Offset: 0

Views

Author

Wolfdieter Lang, Jan 16 2013

Keywords

Comments

Formally Sum_{n>=0} a(n)*(tan(x))^(2*n) = tan(5*x)/ tan(x).
Convergence holds for x from the two open intervals (1-sqrt(6/5), 1-2/sqrt(5)) and (1+2/sqrt(5), 1+sqrt(6/5)), namely (-0.095445115, 0.105572809) and (1.894427191, 2.095445115) (10 digits).
These intervals follow from the denominator of the o.g.f. G(5,x) = (5 - 10*x + x^2)/(1 - 10*x + 5*x^2).
If one replaces x by (tan(x))^2 in this o.g.f. one obtains the formula for tan(5*x)/tan(x) in terms of (tan(x))^2. This formula is the special (n=5) solution of a general recurrence derivable from the addition theorem for tan(n*x) = tan(x + (n-1)*x), namely, with Q(n,x) := tan(n,x)/tan(x), Q(n,x) = (1 + Q(n-1,x))/(1 - v*Q(n-1,x)), where v = v(x) =(tan(x))^2, and the input is Q(1,x) = 1. Read as function of v the solution for Q(5,x) is just G(5,v) with replaced v=v(x).
See the irregular triangles A034867 and A034839 whose row polynomials N(n,x) and D(n,x), respectively, give for n >= 1 the solution to the recurrences N(n,x) = D(n-1,x) + N(n-1,x), D(n,x) = D(n-1,x) + x*N(n-1,x), with inputs N(1,x) = 1 and D(1,x) = 1. The proof by the Pascal triangle A007318 recurrence is trivial. Therefore, Q(n,x) from the preceding comment is given by Q(n,x) = N(n,-v)/D(n,-v) with v=v(x) = (tan(x))^2.
One also has, with Chebyshev's S polynomials (see A049310) Q(n,x) = tan(n*x)/tan(x) = (S(n,y) + S(n-2,y))/(S(n,y) - S(n-2,y)) = y*S(n-1,y)/(S(n,y) - S(n-2,y)) = 1/(1 - (2/y)*S(n-2,y)/S(n-1,y)), where y = y(x) = 2/sqrt(1 + (tan(x))^2). This derives from sin(n*x)/cos(n*x) in terms of Chebyshev S polynomials with argument 2*cos(x) = y(x). Note that S(n-2,y)/S(n-1,y) has the continued fraction representation 1/(y-1/(y- ... -1/(y )..(n-1)brackets..), i.e. (n-1) y's.
These calculations have been motivated by e-mails from Thomas Olsen.

Examples

			Q(5,x=0.1) = tan(0.5)/tan(0.1) = 5.444802663 (Maple 10 digits);
G(5,tan(0.1)^2) = 5.444802664;
Sum_{n>=0} a(n)*(tan(0.1))^(2*n) = 5.444802664.
		

Crossrefs

Cf. 2*A000012 (case n=2), A080923(n+1), n>=0 (case n=3), A077445(n+1), n>=0 (case n=4), A034867, A034839.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((5-10*x+x^2)/(1-10*x+5*x^2))); // G. C. Greubel, Mar 06 2018
  • Mathematica
    CoefficientList[Series[(5-10*x+x^2)/(1-10*x+5*x^2), {x,0,50}], x] (* G. C. Greubel, Mar 06 2018 *)
  • PARI
    my(x='x+O('x^30)); Vec((5-10*x+x^2)/(1-10*x+5*x^2)) \\ G. C. Greubel, Mar 06 2018
    

Formula

O.g.f.: G(5,x) = (5 - 10*x + x^2)/(1 - 10*x + 5*x^2).
a(n) = delta(n,0)/5 - 8*b(n) + 24*b(n+1)/5, n>=0, with Kronecker's delta and b(n):= A190987(n).
E.g.f.: (1 + 8*exp(5*x)*(3*cosh(2*sqrt(5)*x) + sqrt(5)*sinh(2*sqrt(5)*x)))/5. - Stefano Spezia, May 23 2025

A105058 Expansion of g.f. (1+8*x-x^2)/((1+x)*(1-6*x+x^2)).

Original entry on oeis.org

1, 13, 69, 409, 2377, 13861, 80781, 470833, 2744209, 15994429, 93222357, 543339721, 3166815961, 18457556053, 107578520349, 627013566049, 3654502875937, 21300003689581, 124145519261541, 723573111879673
Offset: 0

Views

Author

Creighton Dement, Apr 04 2005

Keywords

Comments

A floretion-generated sequence relating the squares of the numerators of continued fraction convergents to sqrt(2) to the squares of the denominators of continued fraction convergents to sqrt(2) (Pell numbers).
Floretion Algebra Multiplication Program, FAMP Code:
1dia[J]tesseq[ - .5'j + .5'k - .5j' + .5k' - 2'ii' + 'jj' - 'kk' + .5'ij' + .5'ik' + .5'ji' + 'jk' + .5'ki' + 'kj' + e ]. Identity used: dia[I]tes + dia[J]tes + dia[K]tes = jes + fam + 3tes.

Crossrefs

Programs

  • Magma
    [Evaluate(DicksonSecond(2*n+1, -1), 2) -(-1)^n: n in [0..30]]; // G. C. Greubel, Aug 21 2022
    
  • Mathematica
    CoefficientList[ Series[(1+8x-x^2)/((1+x)(1-6x+x^2)), {x,0,30}], x] (* Robert G. Wilson v, Apr 06 2005 *)
    LinearRecurrence[{5,5,-1}, {1,13,69}, 30] (* Harvey P. Dale, Jun 03 2017 *)
  • SageMath
    [lucas_number1(2*n+2,2,-1) -(-1)^n for n in (0..30)] # G. C. Greubel, Aug 21 2022

Formula

a(n) = 2 * A001109(n+1) - (-1)^n.
G.f.: G(0)/(1-3*x) - 1/(1+x), where G(k) = 1 + 1/(1 - x*(8*k-9)/( x*(8*k-1) - 3/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 12 2013
From G. C. Greubel, Aug 21 2022: (Start)
a(n) = A000129(2*n+2) - (-1)^n.
E.g.f.: exp(3*x)*( 2*cosh(2*sqrt(2)*x) + (3/sqrt(2))*sinh(2*sqrt(2)*x)) - exp(-x). (End)
Showing 1-7 of 7 results.