A077463 Number of primes p such that n < p < 2n-2.
0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 4, 4, 5, 5, 5, 6, 6, 6, 7, 6, 6, 6, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 14, 13, 13, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 13, 13, 13, 14, 15, 15, 14, 15, 15, 15, 15, 15
Offset: 1
Keywords
Examples
a(19) = 3, the first value smaller than a previous value, because the only primes between 19 and 2 * 19 - 2 = 36 are {23,29,31}. - _Jonathan Vos Post_, Aug 08 2013
Links
- J. Sondow and E. Weisstein, Bertrand's Postulate, World of Mathematics
- M. Tchebichef, Memoire sur les nombres premiers, J. Math. Pures Appliq. 17 (1852) 366.
Crossrefs
Programs
-
Mathematica
a[n_] := PrimePi[2n - 2] - PrimePi[n]; a[1] = 0; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 31 2012 *)
Comments