cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077495 a(n) = smallest k such that the digit sum of 8k is n.

Original entry on oeis.org

0, 125, 25, 15, 5, 4, 3, 2, 1, 9, 8, 7, 6, 23, 22, 12, 11, 37, 36, 62, 61, 87, 86, 112, 111, 236, 361, 486, 611, 736, 861, 986, 1111, 1236, 2486, 3736, 4986, 6236, 7486, 8736, 9986, 11236, 12486, 24986, 37486, 49986, 62486, 74986, 87486, 99986, 112486, 124986
Offset: 0

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndex)
    import Data.Maybe (fromJust)
    a077495 n = fromJust $ elemIndex n $ map a007953 a008590_list
    a077495_list = map a077495 [0..]
    -- Reinhard Zumkeller, Dec 09 2011

Formula

From Robert Israel, Nov 19 2022: (Start) G.f.: -x^24*(985*x^9 - 125*x^8 - 125*x^7 - 125*x^6 - 125*x^5 - 125*x^4 - 125*x^3 - 125*x^2 - 125*x - 111)/((x - 1)*(10*x^9 - 1)) + 112*x^23 + 86*x^22 + 87*x^21 + 61*x^20 + 62*x^19 + 36*x^18 + 37*x^17 + 11*x^16 + 12*x^15 + 22*x^14 + 23*x^13 + 6*x^12 + 7*x^11 + 8*x^10 + 9*x^9 + x^8 + 2*x^7 + 3*x^6 + 4*x^5 + 5*x^4 + 15*x^3 + 25*x^2 + 125*x.
For n >= 24, a(n) = 125*A051885(n-24) + 111. (End)

Extensions

Corrected and extended by Ray Chandler, Aug 03 2003
Missing a(0)=0 added and offset adjusted by Reinhard Zumkeller, Dec 09 2011

A077494 a(n) = smallest k such that the digit sum of 7k is n.

Original entry on oeis.org

143, 3, 16, 2, 6, 1, 5, 9, 4, 8, 12, 7, 11, 24, 28, 14, 27, 67, 71, 57, 97, 128, 114, 127, 257, 414, 427, 557, 714, 997, 857, 1257, 1414, 1427, 4257, 2857, 5714, 8427, 8557, 9857, 11427, 14257, 12857, 28557, 55714, 42857, 71427, 85714, 99857, 112857, 128557
Offset: 2

Views

Author

Amarnath Murthy, Nov 07 2002

Keywords

Crossrefs

Programs

  • Mathematica
    sk7[n_]:=Module[{k=1},While[Total[IntegerDigits[7k]]!=n,k++];k]; Array[ sk7,60,2] (* Harvey P. Dale, Apr 07 2014 *)

Formula

A077493(n)/7

Extensions

Corrected and extended by Ray Chandler, Aug 03 2003
Showing 1-2 of 2 results.