cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A225903 The smallest number beginning with n whose distinct prime factors are the first n primes.

Original entry on oeis.org

16, 24, 30, 420, 50820, 60060, 7147140, 87297210, 9369900540, 103515091680, 11030826957150, 126152548291770, 13387011595197240, 143910374648370330, 15372244564712285250, 162945792385950223650, 17304843151387913751630, 1876614101750511535732320
Offset: 1

Views

Author

Keywords

Comments

a(3)=30 is the only term with fewer than 1000 digits whose superscripts are all 1.
Though counterexamples are possible, it appears that the sequence is strictly increasing (confirmed for n < 350, and counterexamples are increasingly unlikely statistically thereafter).

Examples

			For a(6), the number 60060 = 2^2 * 3 * 5 * 7 * 11 * 13. The only number smaller whose factors contains the first 6 primes is 30030, which does not begin with 6.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Block[{p = Prime[n], ba = Product[Prime@k, {k, n}], d = IntegerDigits@ n, mu = 1}, While[d != Take[IntegerDigits[mu*ba], Length@d] || Max[ First /@ FactorInteger[mu]] > p, mu++]; mu*ba]; Array[a, 20] (* Giovanni Resta, May 27 2013 *)
  • R
    library(gmp); primes<-function(n) { x=as.bigz(rep(2,n)); for(i in 2:n) x[i]=nextprime(x[i-1]); as.vector(x[1:n]) }
    newmin<-function(b,d) { if(d>length(b)) return();
        while(1) { b[d]=b[d]+1; if((x=prod(pr^b))>v) return()
            if(substr(x,1,ndig(i))==as.character(i)) { v<<-x; return() }
            if(b[d]==2) {b[d]=1; newmin(b,d+1); b[d]=2 }
            newmin(b,d+1)
        }
    }
    y=as.bigz(rep(0,50))
    for(i in 1:50) {
        pr=primes(i); b=rep(1,i)
        while(substr((v=prod(pr^b)),1,ndig(i))!=as.character(i)) b[1]=b[1]+1;
        while(b[1]>1) { b[1]=b[1]-1; newmin(b,2) }
        if(y[i]>v) y[i]=v;
    }

A077516 Largest n-digit number beginning with n and having n divisors, or 0 if no such number exists.

Original entry on oeis.org

1, 29, 361, 4997, 0, 699964, 0, 89999995, 999887641, 1099999504, 0, 129999999988, 0, 14999999996224, 159999933195664, 1699999999999998, 0, 189999999999999477, 0, 20999999999999999817, 219999996968515384384, 2299999999999999765504, 0, 249999999999999999999988
Offset: 1

Views

Author

Amarnath Murthy, Nov 08 2002

Keywords

Examples

			a(4) = 4989 = 3*1663 has 4 divisors: 1, 3, 1663 and 4989. a(5) = 0 as 13^4 = 28561 < 50000 < 59999 < 83521 = 17^4.
		

Crossrefs

Cf. A077515.

Extensions

Corrected and extended by Ray Chandler, Aug 15 2003
a(24) from Jon E. Schoenfield, Mar 17 2022

A124100 Sum_(x^i*y^j*z^k) with i + j + k = m and (x, y, z) = the primitive Pythagorean triple (8, 15, 17).

Original entry on oeis.org

1, 40, 1089, 25160, 531521, 10625640, 204744769, 3844391560, 70827391041, 1286290883240, 23101397290049, 411249127989960, 7269184506192961, 127745926316548840, 2234231991096868929, 38920247688751940360
Offset: 0

Views

Author

Keywords

Examples

			a(2) = 1089 because x^2 + y^2 + z^2 + x*y + x*z + y*z = 8^2 + 15^2 + 17^2 + 8*15 + 8*17 + 15*17 = 1089 and x^2 + y^2 = z^2.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 196.

Crossrefs

Programs

  • Maple
    seq(sum(8^(m-n)*sum(15^p*17^(n-p),p=0..n),n=0..m),m=0..N);
  • Mathematica
    LinearRecurrence[{40,-511,2040},{1,40,1089},30] (* Harvey P. Dale, May 25 2025 *)

Formula

a(m) = (x^(m+2)*(z-y) + y^(m+2)*(x-z) + z^(m+2)*(y-x))/((x-y)*(y-z)*(z-x)).
From Chai Wah Wu, Sep 24 2016: (Start)
a(n) = 40*a(n-1) - 511*a(n-2) + 2040*a(n-3) for n > 2.
G.f.: 1/((1 - 8*x)*(1 - 15*x)*(1 - 17*x)). (End)
a(n) = 2^(3*n+6)/63 - 15^(n+2)/14 + 17^(n+2)/18. - Vaclav Kotesovec, Sep 25 2016
Showing 1-3 of 3 results.