A077528 a(n) = smallest nontrivial (>1) palindrome == 1 (mod n).
3, 4, 5, 6, 7, 8, 9, 55, 11, 111, 121, 66, 99, 121, 33, 171, 55, 77, 101, 22, 111, 323, 121, 101, 131, 55, 141, 88, 121, 373, 33, 232, 171, 141, 181, 1111, 77, 313, 121, 575, 505, 44, 353, 181, 323, 424, 1441, 99, 101, 868, 313, 10601, 55, 111, 393, 343, 929, 414
Offset: 2
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Crossrefs
Cf. A002113.
Programs
-
Maple
f:= proc(n) local d, S,j,q,x0,t,r,x; for d from 2 do S[ceil(d/2)+1]:= {0}: for j from ceil(d/2) to 1 by -1 do if j = (d+1)/2 then q:= 10^(j-1) else q:= 10^(j-1)+10^(d-j) fi; if j = 1 then x0:= 1 else x0:= 0 fi; S[j]:= {seq(seq(x*q+s mod n, x=x0..9), s=S[j+1])}; od; if member(1, S[1]) then t:= 1; r:= 0; for j from 1 to ceil(d/2) do if j = (d+1)/2 then q:= 10^(j-1) else q:= 10^(j-1)+10^(d-j) fi; if j = 1 then x0:= 1 else x0:= 0 fi; for x from x0 to 9 do if member(t - x*q mod n, S[j+1]) then r:= r + x*q; t:= t - x*q mod n; break fi od; od; return r fi od end proc: $3..9, seq(f(n),n=9..100); # Robert Israel, Dec 17 2019
-
Mathematica
With[{pals=Select[Range[2,11000],PalindromeQ]},Table[SelectFirst[pals,Mod[#,n]==1&],{n,2,60}]] (* Harvey P. Dale, Dec 03 2023 *)
Extensions
Corrected and extended by Ray Chandler, Aug 20 2003