A077597 Coefficient of x in the n-th Moebius polynomial (A074586), M(n,x), which satisfies M(n,-1)=mu(n) the Moebius function of n.
0, 2, 4, 7, 9, 13, 15, 19, 22, 26, 28, 34, 36, 40, 44, 49, 51, 57, 59, 65, 69, 73, 75, 83, 86, 90, 94, 100, 102, 110, 112, 118, 122, 126, 130, 139, 141, 145, 149, 157, 159, 167, 169, 175, 181, 185, 187, 197, 200, 206, 210, 216, 218, 226, 230, 238, 242, 246, 248, 260
Offset: 0
Keywords
Examples
These are the coefficients of x in the Moebius polynomials, which begin: M(1,x) = 1; M(2,x) = 1 + 2x; M(3,x) = 1 + 4x + 2x^2; M(4,x) = 1 + 7x + 8x^2 + 2x^3; M(5,x) = 1 + 9x + 15x^2 + 10x^3 + 2x^4; M(6,x) = 1 + 13x + 30x^2 + 27x^3 + 12x^4 + 2x^5; M(7,x) = 1 + 15x + 43x^2 + 57x^3 + 39x^4 + 14x^5 + 2x^6; M(8,x) = 1 + 19x + 67x^2 + 108x^3 + 98x^4 + 53x^5 + 16x^6 + 2x^7.
Links
- R. K. Guy, Conway's prime producing machine, Math. Mag. 56 (1983), no. 1, 26-33 (see p. 33).
Crossrefs
Programs
-
Mathematica
a[n_] := Sum[ Floor[(n+1)/k], {k, 1, n+1}] - 1; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Jun 18 2013 *)
Formula
a(n) = Sum_{k = 1..n} floor((n+1)/k). - N. J. A. Sloane, Oct 28 2008
Since a(n) = A006218(n+1) - 1, asymptotics and bounds may be obtained from that entry.
Comments