cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A077596 Central coefficients of Moebius polynomials (A074586): coefficient of x^(n/2-1/2) if n is odd; coefficient of x^(n/2-1) if n is even and >4. The n-th Moebius polynomial, M(n,x), satisfies M(n,-1)=mu(n) the Moebius function of n.

Original entry on oeis.org

1, 2, 4, 8, 15, 30, 57, 108, 206, 393, 752, 1439, 2772, 5334, 10327, 19967, 38808, 75319, 146844, 285862, 558723, 1090370, 2135551, 4176224, 8193490, 16050930, 31537017, 61872863, 121721157, 239115024, 470918888, 926141652, 1825708221
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Comments

These terms seem to be asymptotic to c*2^n/sqrt(n) with c=1.2208..
c = 1.220916104316909855089768170983761594215082355524... . - Vaclav Kotesovec, Feb 11 2015

Examples

			These are the largest coefficients of the Moebius polynomials, which begin:
M(1,x) = 1;
M(2,x) = 1 + 2x;
M(3,x) = 1 + 4x + 2x^2;
M(4,x) = 1 + 7x + 8x^2 + 2x^3;
M(5,x) = 1 + 9x +15x^2 +10x^3 + 2x^4;
M(6,x) = 1 +13x +30x^2 +27x^3 +12x^4 + 2x^5;
M(7,x) = 1 +15x +43x^2 +57x^3 +39x^4 +14x^5 + 2x^6;
M(8,x) = 1 +19x +67x^2+108x^3 +98x^4 +53x^5 +16x^6 + 2x^7; ...
		

Crossrefs

Programs

  • Mathematica
    m[n_, 1] = 1; m[n_, k_] := m[n, k] = Sum[Floor[n/j]*m[j, k - 1], {j, 1, n - 1}];
    a[n_ /; n <= 4] := 2^(n - 1); a[n_?OddQ] := m[n, (n + 1)/2]; a[n_?EvenQ] := m[n, n/2]; Table[a[n], {n, 1, 33}] (* Jean-François Alcover, Jun 18 2013 *)

A077598 Coefficient of x^2 in the n-th Moebius polynomial (A074586), M(n,x), which satisfies M(n,-1)=mu(n) the Moebius function of n.

Original entry on oeis.org

0, 0, 2, 8, 15, 30, 43, 67, 90, 123, 149, 203, 237, 290, 343, 415, 464, 556, 613, 716, 800, 899, 972, 1126, 1218, 1342, 1458, 1616, 1716, 1916, 2026, 2215, 2365, 2540, 2690, 2959, 3098, 3300, 3485, 3762, 3919, 4221, 4388, 4667, 4921, 5179, 5364, 5762
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Comments

These terms seem to be asymptotic to c*n^2*log(n) with c=0.69...

Examples

			These are the coefficients of x^2 in the Moebius polynomials, which begin: M(1,x)=1; M(2,x)=1 + 2x; M(3,x)=1 + 4x + 2x^2; M(4,x)=1 + 7x + 8x^2 + 2x^3; M(5,x)=1 + 9x +15x^2 +10x^3 + 2x^4; M(6,x)=1 +13x +30x^2 +27x^3 +12x^4 + 2x^5; M(7,x)=1 +15x +43x^2 +57x^3 +39x^4 +14x^5 + 2x^6; M(8,x)=1 +19x +67x^2+108x^3 +98x^4 +53x^5 +16x^6 + 2x^7.
		

Crossrefs

Programs

  • Mathematica
    m[n_, 1] = 1; m[n_, k_] := m[n, k] = Sum[Floor[n/j]*m[j, k - 1], {j, 1, n - 1}]; a[n_] := m[n, 3]; Table[a[n], {n, 1, 48}] (* Jean-François Alcover, Jun 18 2013 *)

A077599 Sequence of n such that -1 is a "double" root for M(n,x) (i.e., M(n,x)=(x+1)^2*Q(n,x)).

Original entry on oeis.org

8, 9, 24, 45, 100, 117, 120, 125, 135, 171, 175, 180, 184, 224, 243, 248, 256, 261, 270, 304, 312, 324, 342, 343, 344, 360, 369, 405, 459, 468, 472, 475, 477, 486, 507, 513, 520, 531, 536, 578, 584, 603, 608, 625, 639, 640, 657, 664, 675, 704, 711, 720, 728
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Comments

The n-th Moebius polynomial M(n,x) satisfies M(n,-1)=mu(n), the Moebius function of n; thus -1 is a simple root of M(n,x) if n is not squarefree. Hence these values could be called "double nonsquarefree numbers".
The n-th polynomial is divisible by (x+1)^3 for n=175, 343, 513, 800, 875. - T. D. Noe, Jan 09 2008

Crossrefs

Programs

  • Mathematica
    a[n_,1]=1; a[n_,k_]:=a[n, k]=Sum[Floor[n/m] a[m,k-1], {m,n-1}]; t={}; Do[p=Table[a[n,k], {k,n}].(x^Range[0,n-1]); If[PolynomialMod[p,(x+1)^2]==0, AppendTo[t,n]], {n,100}]; t (* T. D. Noe, Jan 09 2008 *)

Extensions

More terms from T. D. Noe, Jan 09 2008

A077600 Number of real roots for the n-th Moebius polynomial, M(n,x), which satisfies M(n,-1)=mu(n) the Moebius function of n.

Original entry on oeis.org

0, 1, 2, 3, 2, 3, 2, 5, 4, 3, 2, 5, 4, 3, 4, 5, 4, 5, 2, 5, 4, 3, 2, 7, 6, 5, 6, 5, 4, 5, 4, 7, 4, 5, 4, 7, 6, 5, 6, 7, 4, 5, 4, 5, 6, 5, 4, 7, 6, 7, 6, 5, 4, 7, 4, 5, 4, 5, 4, 7, 6, 5, 8, 7, 6, 5, 6, 9, 6, 5, 4, 9, 8, 5, 8, 9, 4, 5, 4, 7, 8, 7, 4, 7, 6, 7, 6, 7, 4, 9, 4, 7, 8, 5, 6, 7, 6, 9, 8
Offset: 1

Views

Author

Benoit Cloitre and Paul D. Hanna, Nov 10 2002

Keywords

Crossrefs

Programs

  • Mathematica
    m[1, x_] = 1; m[n_, x_] :=  m[n, x] = 1 + Sum[x*m[k, x]*Floor[n/k], {k, 1, n-1}] // Expand; a[n_] := CountRoots[m[n, x], x]; Table[a[n], {n, 1, 99}] (* Jean-François Alcover, Sep 13 2012 *)

Extensions

Typo (?) a(45)=4 replaced with 6 by Jean-François Alcover, Sep 13 2012

A355538 Partial sum of A001221 (number of distinct prime factors) minus 1, ranging from 2 to n.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 23, 23, 24, 25, 26, 26, 27, 27, 28, 29, 30, 30, 31, 32, 33, 34, 35, 35, 37, 37, 38, 39, 39, 40, 42, 42, 43, 44, 46, 46
Offset: 1

Views

Author

Gus Wiseman, Jul 23 2022

Keywords

Comments

For initial terms up to 30 we have a(n) = Log_2 A355537(n).

Crossrefs

The sum of the same range is A000096.
The product of the same range is A000142, Heinz number A070826.
For divisors (not just prime factors) we get A002541, also A006218, A077597.
A shifted variation is A013939.
The unshifted version is A022559, product A327486, w/o multiplicity A355537.
The ranges themselves are the rows of A131818 (shifted).
Partial sums of A297155 (shifted).
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A066843 gives partial sums of A000005.

Programs

  • Mathematica
    Table[Total[(PrimeNu[#]-1)&/@Range[2,n]],{n,1,100}]

Formula

a(n) = A013939(n) - n + 1.

A085683 a(n) = Sum_{k = 1..N-1} floor(N/k) where N is the n-th prime.

Original entry on oeis.org

2, 4, 9, 15, 28, 36, 51, 59, 75, 102, 112, 141, 159, 169, 187, 218, 248, 262, 293, 313, 327, 357, 378, 412, 460, 483, 493, 515, 529, 553, 636, 658, 696, 706, 767, 781, 821, 857, 877, 918, 952, 972, 1032, 1048, 1071, 1085, 1167, 1239, 1266, 1280, 1306, 1342, 1364, 1422
Offset: 1

Views

Author

N. J. A. Sloane, Oct 28 2008

Keywords

Comments

The old entry with this sequence number was a duplicate of A081532.

Crossrefs

Programs

  • Mathematica
    (Rest@ FoldList[ Plus, 0, DivisorSigma[0, Range@ Prime@ 100]])[[ Prime@ Range@ 100]] -1 (* Giovanni Resta, Jun 09 2015 *)
  • Python
    from math import isqrt
    from sympy import prime
    def A085683(n): return -(s:=isqrt(m:=prime(n)))**2+(sum(m//k for k in range(1,s+1))<<1)-1 # Chai Wah Wu, Oct 23 2023
Showing 1-6 of 6 results.