A077609 Triangle in which n-th row lists infinitary divisors of n.
1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 2, 4, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 2, 3, 4, 6, 8, 12, 24, 1, 25, 1, 2, 13, 26, 1, 3, 9, 27, 1, 4, 7, 28, 1, 29, 1
Offset: 1
Examples
The first few rows are: 1; 1, 2; 1, 3; 1, 4; 1, 5; 1, 2, 3, 6; 1, 7; 1, 2, 4, 8; 1, 9; 1, 2, 5, 10; 1, 11; 1, 3, 4, 12; 1, 13; 1, 2, 7, 14; 1, 3, 5, 15; 1, 16; 1, 17;
Links
- Reinhard Zumkeller, Rows n = 1..1000 of table, flattened
- Graeme L. Cohen, On an integer's infinitary divisors, Mathematics of Computation, Vol. 54, No. 189 (1990), pp. 395-411.
- Graeme L. Cohen and Peter Hagis, Jr., Arithmetic functions associated with the infinitary divisors of an integer, Internat. J. Math. Math. Sci. 16 (2) (1993) 373-384.
- Eric Weisstein's World of Mathematics, Infinitary Divisor.
Programs
-
Haskell
import Data.List ((\\)) a077609 n k = a077609_row n !! (k-1) a077609_row n = filter (\d -> d == 1 || null (a213925_row d \\ a213925_row n)) $ a027750_row n a077609_tabf = map a077609_row [1..] -- Reinhard Zumkeller, Jul 10 2013
-
Maple
# see the function idivisors() in A049417. # R. J. Mathar, Oct 05 2017
-
Mathematica
f[x_] := If[x == 1, 1, Sort@ Flatten@ Outer[Times, Sequence @@ (FactorInteger[x] /. {p_, m_Integer} :> p^Select[Range[0, m], BitOr[m, #] == m &])]] ; Array[f, 30] // Flatten (* Paul Abbott (paul(AT)physics.uwa.edu.au), Apr 29 2005 *) (* edited by Michael De Vlieger, Jun 07 2016 *)
-
PARI
isidiv(d, f) = {if (d==1, return (1)); for (k=1, #f~, bne = binary(f[k,2]); bde = binary(valuation(d, f[k,1])); if (#bde < #bne, bde = concat(vector(#bne-#bde), bde)); for (j=1, #bne, if (! bne[j] && bde[j], return (0)););); return (1);} row(n) = {d = divisors(n); f = factor(n); idiv = []; for (k=1, #d, if (isidiv(d[k], f), idiv = concat(idiv, d[k]));); idiv;} \\ Michel Marcus, Feb 15 2016
Comments