cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A077707 a(n) = A077706(n+1)/A077706(n).

Original entry on oeis.org

11, 23, 97, 391, 188, 2366, 2269, 2042, 2036, 372, 4742, 3438, 43871, 6642, 47957, 158388, 31666, 15736, 134046, 60877, 90061, 69122, 249766, 123726, 269358, 162881, 1426093, 32082, 1208059, 668822, 541654, 143087, 1399261, 1202267
Offset: 1

Views

Author

Amarnath Murthy, Nov 18 2002

Keywords

Crossrefs

Cf. A077706.

Extensions

More terms from Ray Chandler, Jul 27 2003

A332116 a(n) = (10^(2n+1)-1)/9 + 5*10^n.

Original entry on oeis.org

6, 161, 11611, 1116111, 111161111, 11111611111, 1111116111111, 111111161111111, 11111111611111111, 1111111116111111111, 111111111161111111111, 11111111111611111111111, 1111111111116111111111111, 111111111111161111111111111, 11111111111111611111111111111, 1111111111111116111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107126 = {10, 14, 40, 59, 160, 412, ...} for the indices of primes.

Crossrefs

Cf. (A077706-1)/2 = A107126: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332126 .. A332196 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332116 := n -> (10^(2*n+1)-1)/9+5*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 5*10^# &, 15, 0]
  • PARI
    apply( {A332116(n)=10^(n*2+1)\9+5*10^n}, [0..15])
    
  • Python
    def A332116(n): return 10**(n*2+1)//9+5*10**n

Formula

a(n) = A138148(n) + 6*10^n = A002275(2n+1) + 5*10^n.
G.f.: (6 - 505*x + 400*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
E.g.f.: exp(x)*(10*exp(99*x) + 45*exp(9*x) - 1)/9. - Stefano Spezia, Jul 13 2024
Showing 1-2 of 2 results.