cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077772 Continued fraction expansion of the ternary Champernowne constant.

Original entry on oeis.org

0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, 1, 1, 1, 3, 4, 21, 3, 1, 9, 1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 15 2002

Keywords

Crossrefs

Cf. A054635 (ternary digits), A077771 (decimals).
Cf. A030190, A066716, A066717: binary digits, decimals and continued fraction of the binary Champernowne constant; A033307: decimal Champernowne constant.

Programs

  • Mathematica
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 3] &, 20000], 0}, 3]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    \p 10000
    t=0;r=0.;T=1; for(n=1,1e6,d=#digits(n,3);t+=d;T*=3^d;r+=n/T;if(t>20959, return)); v=contfrac(r); v[1..30] \\ Charles R Greathouse IV, Sep 23 2014
    
  • PARI
    A077772(b=3,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303/log(b)+1, nM. F. Hasler, Oct 25 2019