A077772 Continued fraction expansion of the ternary Champernowne constant.
0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, 1, 1, 1, 3, 4, 21, 3, 1, 9, 1
Offset: 0
Links
- John K. Sikora, Table of n, a(n) for n = 0..2061 (terms n = 0..1155 from Robert G. Wilson v)
- J. K. Sikora, The first 2982556 terms of the CFE of the ternary Champernowne Constant (141 MB zipped)
- Eric Weisstein's World of Mathematics, Ternary Champernowne Constant
Crossrefs
Programs
-
Mathematica
almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 3] &, 20000], 0}, 3]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
-
PARI
\p 10000 t=0;r=0.;T=1; for(n=1,1e6,d=#digits(n,3);t+=d;T*=3^d;r+=n/T;if(t>20959, return)); v=contfrac(r); v[1..30] \\ Charles R Greathouse IV, Sep 23 2014
-
PARI
A077772(b=3,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303/log(b)+1, n
M. F. Hasler, Oct 25 2019