cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A244332 Position of the incrementally largest term in the continued fraction for the base 3 Champernowne constant (A077772).

Original entry on oeis.org

1, 2, 4, 5, 7, 19, 39, 121, 321, 813, 2063, 4957, 11731, 26329, 59501, 132273, 294475, 644557, 1392933, 2982557
Offset: 1

Views

Author

John K. Sikora, Jun 26 2014

Keywords

Crossrefs

Cf. A077772 (Continued fraction expansion of the ternary Champernowne constant.)
Cf. A244757 (Incrementally largest terms in the continued fraction for the base 3 Champernowne constant.)
Cf. A244333 (Number of ternary digits in the high-water marks of the terms of the continued fraction of the base 3 Champernowne constant.)

A244757 Incrementally largest terms in the continued fraction for the base 3 Champernowne constant (A077772).

Original entry on oeis.org

0, 1, 2, 37, 162, 3068518062211324, 1079268324684171943515797470873767312825026176345571319042096689270
Offset: 1

Views

Author

John K. Sikora, Jul 05 2014

Keywords

Crossrefs

Cf. A077772 (Continued fraction expansion of the ternary Champernowne constant.)
Cf. A244332 (Position of the incrementally largest term in the continued fraction for the ternary Champernowne constant.)

A244333 Number of ternary digits in the high-water marks of the terms of the continued fraction of the base 3 Champernowne constant (A077772).

Original entry on oeis.org

0, 1, 1, 4, 5, 33, 139, 515, 1809, 6181, 20759, 68871, 226333, 738089, 2391459, 7705867, 24711977, 78918957, 251105839
Offset: 1

Views

Author

John K. Sikora, Jun 27 2014

Keywords

Crossrefs

Cf. A077772 (Continued fraction expansion of the ternary Champernowne constant.)
Cf. A244757 (Incrementally largest terms in the continued fraction for the base 3 Champernowne constant.)
Cf. A244332 (Position of the incrementally largest term in the continued fraction for the base 3 Champernowne constant.)

Programs

  • Ruby
    puts (5..19).collect {|n| (1..(n-3)).inject(0) {|sum, m| sum+2*m*3**(m-1)}+3-n-2*((1..(n-4)).inject(0) {|sum1, m1| sum1+2*m1*3**(m1-1)}+3-(n-1))-3*(n-2)+4}

Formula

It appears that: Define NCD(N)=3-N+(sum{m=1..(N-3)} 2*m*3^(m-1)); then for n>=5, a(n) = NCD(n)-2*NCD(n-1)-3*(n-2)+4.

A244759 Number of ternary digits in the n-th term of the continued fraction of the base 3 Champernowne constant (A077772).

Original entry on oeis.org

0, 1, 1, 1, 4, 1, 5, 1, 1, 1, 2, 1, 2, 1, 3, 1, 2, 1, 33, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 3, 1, 3, 1, 1, 2, 2, 6, 1, 139, 1, 1, 1, 2, 2, 3, 2, 1, 3, 1, 1, 2, 4, 1, 2, 2, 1, 4, 1, 1, 2, 1, 1, 2, 2, 2, 3, 1, 1, 2, 2, 1, 1, 1
Offset: 1

Views

Author

John K. Sikora, Jul 06 2014

Keywords

Crossrefs

Cf. A077772 (Continued fraction expansion of the ternary Champernowne constant.)
Cf. A244332 (Position of the incrementally largest term in the continued fraction for the base 3 Champernowne constant.)

A066717 The continued fraction for the "binary" Champernowne constant.

Original entry on oeis.org

0, 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, 7, 2, 4, 1, 2, 1, 2, 1, 1, 4534532, 1, 4, 5, 1, 2, 1, 7, 1, 16, 1, 4, 1, 5, 5, 1, 5, 1, 4, 1, 2, 1, 5, 3, 2, 38, 2, 12, 1, 15, 2, 6, 3, 30, 4682854730443938, 1, 1, 68, 1, 6, 5, 4, 4, 1, 2, 1, 1, 1, 1, 2, 22, 1, 2, 7, 1, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jan 14 2002

Keywords

Crossrefs

Cf. A030190 & A066716 (binary & decimal digits of the binary Champernowne constant), A033307 (decimal Champernowne constant).
Cf. A054635, A077771, A077772: base 3, decimals and continued fraction of ternary Champernowne constant.

Programs

  • Mathematica
    a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 10^3} ]; ContinuedFraction[ N[ FromDigits[ {Flatten[a], 0}, 2], 500]]
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 2] &, 20000], 0}, 2]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    A066717(b=2,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303\log(b)+1, nM. F. Hasler, Oct 25 2019

A077771 Decimal value of the ternary Champernowne constant.

Original entry on oeis.org

5, 9, 8, 9, 5, 8, 1, 6, 7, 5, 3, 8, 4, 3, 3, 9, 9, 2, 5, 0, 0, 1, 7, 2, 2, 1, 7, 9, 2, 9, 4, 3, 6, 5, 9, 0, 9, 7, 8, 2, 0, 8, 7, 6, 8, 6, 7, 6, 1, 0, 5, 9, 3, 6, 7, 5, 4, 7, 8, 6, 0, 7, 5, 4, 7, 9, 6, 5, 1, 8, 4, 1, 9, 5, 2, 8, 0, 8, 4, 2, 0, 5, 5, 4, 0, 7, 2, 1, 1, 0, 8, 0, 5, 2, 7, 9, 6, 4, 1, 5, 7
Offset: 0

Views

Author

Eric W. Weisstein, Nov 15 2002

Keywords

Comments

The first 99 digits form a prime. - Jonathan Vos Post, Nov 11 2004
This constant is 3-normal. - Charles R Greathouse IV, Feb 06 2015

Examples

			0.598958167538433992500172217929...
		

Crossrefs

Cf. A054635 (base 3 digits), A077772 (continued fraction).
Cf. A030190, A066716, A066717: binary digits, decimals and continued fraction of the binary Champernowne constant; A033307: decimal Champernowne constant.

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[3], 10, 100]] (* Paolo Xausa, May 03 2024 *)
  • PARI
    A077771(b=3,t=1.,s=b)={sum(n=1, default(realprecision)*2.303\log(b)+1, nM. F. Hasler, Oct 25 2019

A378345 Continued fraction expansion of the base 4 Champernowne constant.

Original entry on oeis.org

0, 2, 2, 1, 7, 1, 1, 2, 1, 1, 1, 1, 6806293849, 1, 33, 157, 1, 2, 1, 3, 1, 1, 2345427263108642344323518197756649380964709224412095403124301722165, 2, 2, 1, 1, 1, 3, 1, 1, 6, 2, 7, 11, 1, 1, 7, 12, 1, 1, 1, 126, 3, 13, 1, 13, 4, 33, 3, 1, 1, 1, 3, 2, 4, 1, 9, 2
Offset: 0

Views

Author

Joshua Searle, Dec 13 2024

Keywords

Crossrefs

Cf. A030373 (base 4 expansion), A378328 (decimal expansion).
Other continued fractions: A066717, A077772, A378346, A378347, A378348, A378349, A378350, A030167.

Programs

  • Mathematica
    ContinuedFraction[ChampernowneNumber[4], 100]

A378346 Continued fraction expansion of the base 5 Champernowne constant.

Original entry on oeis.org

0, 3, 4, 1, 1, 2, 2, 18, 1, 20, 1302701925685142513155, 3, 5, 6, 1, 1, 1, 1, 1, 1, 2, 13, 5, 2, 1, 22, 1, 1
Offset: 0

Views

Author

Joshua Searle, Dec 13 2024

Keywords

Comments

The next term a(28) is approximately equal to 2.83 * 10^173.

Crossrefs

Cf. A031219 (base 5 expansion), A378329 (decimal exapansion).
Other continued fractions: A066717, A077772, A378345, A378347, A378348, A378349, A378350, A030167.

Programs

  • Mathematica
    ContinuedFraction[ChampernowneNumber[5], 100]

A378347 Continued fraction expansion of the base 6 Champernowne constant.

Original entry on oeis.org

0, 4, 5, 1, 10, 1, 4, 3, 9, 1, 2, 2, 1, 1, 699745284439054751106354294914368414245, 2, 5, 1, 20, 22, 2, 2, 1, 10, 3, 1, 2, 2, 2, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Joshua Searle, Dec 13 2024

Keywords

Comments

The next term a(34) is approximately equal to 1.21 * 10^364.

Crossrefs

Cf. A030548 (base 6 expansion), A378330 (decimal expansion).
Other continued fractions: A066717, A077772, A378345, A378346, A378348, A378349, A378350, A030167.

Programs

  • Mathematica
    ContinuedFraction[ChampernowneNumber[6], 100]

A378348 Continued fraction expansion of the base 7 Champernowne constant.

Original entry on oeis.org

0, 5, 6, 1, 85, 1, 2, 1, 11, 1, 3, 2, 1, 5, 1, 2, 8697444597678755989498288581049684565698396369776180853037564, 1, 4, 2, 8, 6, 1, 2, 11, 1, 11, 1, 9, 2, 11, 1, 13, 2, 3, 10
Offset: 0

Views

Author

Joshua Searle, Dec 14 2024

Keywords

Comments

The next term a(36) is approximately equal to 4.24*10^662.

Crossrefs

Cf. A030998 (base 7 expansion), A378331 (decimal expansion).
Other continued fractions: A066717, A077772, A378345, A378346, A378347, A378349, A378350, A030167.

Programs

  • Mathematica
    ContinuedFraction[ChampernowneNumber[7], 100]
Showing 1-10 of 18 results. Next