cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A003137 Write n in base 3 and juxtapose.

Original entry on oeis.org

1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1, 1, 0, 2, 2, 1
Offset: 1

Views

Author

Keywords

Comments

An irregular table in which the n-th row lists the base-3 digits of n, see A007089. - Jason Kimberley, Dec 07 2012
The base-3 Champernowne constant (A077771): it is normal in base 3. - Jason Kimberley, Dec 07 2012

Examples

			1,
2,
1,0,
1,1,
1,2,
2,0,
2,1,
2,2,
1,0,0,
1,0,1,.... _R. J. Mathar_, Aug 16 2021
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Tables in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), this sequence and A054635 (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012
Cf. A081604 (row lengths), A053735 (row sums), A030341 (rows reversed), A077771, A007089.

Programs

  • Haskell
    a003137 n k = a003137_tabf !! (n-1) !! k
    a003137_row n = a003137_tabf !! (n-1)
    a003137_tabf = map reverse $ tail a030341_tabf
    a003137_list = concat a003137_tabf
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Magma
    &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    Flatten@ IntegerDigits[ Range@ 40, 3] (* or *)
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ a[#, 3] &, 105] (* Robert G. Wilson v, Jul 01 2014 *)
  • Python
    from itertools import count, islice
    from sympy.ntheory.factor_ import digits
    def A003137_gen(): return (d for m in count(1) for d in digits(m,3)[1:])
    A003137_list = list(islice(A003137_gen(),30)) # Chai Wah Wu, Jan 07 2022

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Sep 25 2000

A054635 Champernowne sequence: write n in base 3 and juxtapose.

Original entry on oeis.org

0, 1, 2, 1, 0, 1, 1, 1, 2, 2, 0, 2, 1, 2, 2, 1, 0, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 2, 0, 1, 2, 1, 1, 2, 2, 2, 0, 0, 2, 0, 1, 2, 0, 2, 2, 1, 0, 2, 1, 1, 2, 1, 2, 2, 2, 0, 2, 2, 1, 2, 2, 2, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 2, 0, 1, 0, 2, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 16 2000

Keywords

Comments

Essentially the same as A003137. - R. J. Mathar, Aug 29 2009
An irregular table in which the n-th row lists the base-3 digits of n. - Jason Kimberley, Dec 07 2012
The base-3 Champernowne constant (A077771): it is normal in base 3. - Jason Kimberley, Dec 07 2012

Crossrefs

Cf. A054637 (partial sums).
Cf. A081604 (row lengths), A053735 (row sums), A030341 (rows reversed), A007089, A077771.
Table in which the n-th row lists the base b digits of n: A030190 and A030302 (b=2), A003137 and this sequence (b=3), A030373 (b=4), A031219 (b=5), A030548 (b=6), A030998 (b=7), A031035 and A054634 (b=8), A031076 (b=9), A007376 and A033307 (b=10). - Jason Kimberley, Dec 06 2012

Programs

  • Haskell
    a054635 n k = a054635_tabf !! n !! k
    a054635_row n = a054635_tabf !! n
    a054635_tabf = map reverse a030341_tabf
    a054635_list = concat a054635_tabf
    -- Reinhard Zumkeller, Feb 21 2013
    
  • Magma
    [0]cat &cat[Reverse(IntegerToSequence(n,3)):n in[1..31]]; // Jason Kimberley, Dec 07 2012
    
  • Mathematica
    almostNatural[n_, b_] := Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Array[ almostNatural[#, 3] &, 105, 0] (* Robert G. Wilson v, Jun 29 2014 *)
    First[RealDigits[ChampernowneNumber[3], 3, 100, 0]] (* Paolo Xausa, Jun 19 2024 *)
  • Python
    from sympy.ntheory.digits import digits
    def agen(limit):
        for n in range(limit):
            yield from digits(n, 3)[1:]
    print([an for an in agen(35)]) # Michael S. Branicky, Sep 01 2021

A066717 The continued fraction for the "binary" Champernowne constant.

Original entry on oeis.org

0, 1, 6, 3, 1, 6, 5, 3, 3, 1, 6, 4, 1, 3, 298, 1, 6, 1, 1, 3, 285, 7, 2, 4, 1, 2, 1, 2, 1, 1, 4534532, 1, 4, 5, 1, 2, 1, 7, 1, 16, 1, 4, 1, 5, 5, 1, 5, 1, 4, 1, 2, 1, 5, 3, 2, 38, 2, 12, 1, 15, 2, 6, 3, 30, 4682854730443938, 1, 1, 68, 1, 6, 5, 4, 4, 1, 2, 1, 1, 1, 1, 2, 22, 1, 2, 7, 1, 2
Offset: 0

Views

Author

Robert G. Wilson v, Jan 14 2002

Keywords

Crossrefs

Cf. A030190 & A066716 (binary & decimal digits of the binary Champernowne constant), A033307 (decimal Champernowne constant).
Cf. A054635, A077771, A077772: base 3, decimals and continued fraction of ternary Champernowne constant.

Programs

  • Mathematica
    a = {}; Do[a = Append[a, IntegerDigits[n, 2]], {n, 1, 10^3} ]; ContinuedFraction[ N[ FromDigits[ {Flatten[a], 0}, 2], 500]]
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 2] &, 20000], 0}, 2]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    A066717(b=2,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303\log(b)+1, nM. F. Hasler, Oct 25 2019

A077772 Continued fraction expansion of the ternary Champernowne constant.

Original entry on oeis.org

0, 1, 1, 2, 37, 1, 162, 1, 1, 1, 3, 1, 7, 1, 9, 2, 3, 1, 3068518062211324, 2, 1, 2, 6, 13, 1, 2, 1, 3, 1, 10, 1, 21, 1, 1, 4, 3, 577, 1, 1079268324684171943515797470873767312825026176345571319042096689270, 1, 1, 1, 3, 4, 21, 3, 1, 9, 1
Offset: 0

Views

Author

Eric W. Weisstein, Nov 15 2002

Keywords

Crossrefs

Cf. A054635 (ternary digits), A077771 (decimals).
Cf. A030190, A066716, A066717: binary digits, decimals and continued fraction of the binary Champernowne constant; A033307: decimal Champernowne constant.

Programs

  • Mathematica
    almostNatural[n_, b_] :=  Block[{m = 0, d = n, i = 1, l, p}, While[m <= d, l = m; m = (b - 1) i*b^(i - 1) + l; i++]; i--; p = Mod[d - l, i]; q = Floor[(d - l)/i] + b^(i - 1); If[p != 0, IntegerDigits[q, b][[p]], Mod[q - 1, b]]]; Take[ ContinuedFraction[ FromDigits[ {Array[almostNatural[#, 3] &, 20000], 0}, 3]], 100] (* Robert G. Wilson v, Jul 21 2014 *)
  • PARI
    \p 10000
    t=0;r=0.;T=1; for(n=1,1e6,d=#digits(n,3);t+=d;T*=3^d;r+=n/T;if(t>20959, return)); v=contfrac(r); v[1..30] \\ Charles R Greathouse IV, Sep 23 2014
    
  • PARI
    A077772(b=3,t=1.,s=b)={contfrac(sum(n=1,default(realprecision)*2.303/log(b)+1, nM. F. Hasler, Oct 25 2019

A378328 Decimal expansion of the base 4 Champernowne constant.

Original entry on oeis.org

4, 2, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 6, 5, 7, 6, 4, 5, 5, 6, 5, 7, 1, 4, 2, 0, 1, 6, 1, 9, 8, 5, 0, 9, 5, 5, 4, 6, 2, 3, 8, 9, 6, 7, 2, 3, 0, 4, 1, 0, 6, 8, 2, 7, 9, 1, 6, 3, 5, 1, 7, 2, 5, 8, 7, 5, 5, 3, 5, 3, 9, 9, 3, 4, 4, 9, 2, 3, 1, 5, 4, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 4 and then converted into base 10.
This constant is 4-normal.

Examples

			0.426111111111111065764556571420161985095546238967230410682791635172587553...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[4], 10, 100]]

A378329 Decimal expansion of the base 5 Champernowne constant.

Original entry on oeis.org

3, 1, 0, 7, 3, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 9, 6, 3, 0, 3, 3, 3, 1, 1, 6, 0, 4, 9, 4, 4, 8, 4, 9, 1, 1, 5, 5, 0, 4, 6, 8, 2, 6, 2, 2, 2, 6, 8, 4, 7, 0, 3, 4, 3, 3, 9, 2, 2, 9, 9, 6, 8, 7, 8, 2, 5, 1, 8, 2, 1, 0, 1
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 5 and then converted into base 10.
This constant is 5-normal.

Examples

			0.310736111111111111111111111110963033311604944849115504682622268470343392...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[5], 10, 100]]

A378330 Decimal expansion of the base 6 Champernowne constant.

Original entry on oeis.org

2, 3, 9, 8, 6, 2, 6, 8, 5, 8, 1, 5, 0, 6, 6, 7, 6, 7, 4, 4, 7, 7, 1, 9, 8, 2, 8, 6, 7, 2, 2, 0, 9, 6, 2, 4, 5, 9, 0, 5, 7, 6, 9, 7, 1, 5, 2, 9, 3, 5, 0, 2, 1, 3, 7, 6, 0, 6, 9, 3, 1, 9, 5, 6, 3, 1, 5, 7, 6, 5, 8, 3, 4, 3, 7, 7, 5, 4, 8, 3, 0, 5, 0, 7, 8, 0, 4
Offset: 0

Views

Author

Joshua Searle, Nov 23 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 6 and then converted into base 10.
This constant is 6-normal.

Examples

			0.239862685815066767447719828672209624590576971529350213760693195631576583...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[6], 10, 100]]

A378331 Decimal expansion of the base 7 Champernowne constant.

Original entry on oeis.org

1, 9, 4, 4, 3, 5, 5, 3, 5, 0, 8, 6, 2, 4, 0, 5, 2, 1, 4, 7, 5, 8, 4, 0, 0, 9, 3, 0, 8, 2, 9, 0, 8, 5, 7, 6, 4, 5, 2, 9, 3, 2, 9, 7, 1, 0, 5, 0, 4, 2, 2, 1, 1, 2, 4, 7, 9, 5, 8, 8, 5, 3, 1, 2, 3, 3, 6, 7, 9, 0, 8, 8, 7, 3, 9, 4, 0, 3, 5, 6, 6, 3, 9, 7, 0, 8, 5
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 7 and then converted into base 10.
This constant is 7-normal.

Examples

			0.194435535086240521475840093082908576452932971050422112479588531233679088...
		

Crossrefs

(base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[7], 10, 100]]

A378332 Decimal expansion of the base 8 Champernowne constant.

Original entry on oeis.org

1, 6, 3, 2, 6, 4, 8, 1, 2, 1, 0, 5, 2, 1, 6, 7, 9, 7, 3, 6, 7, 0, 9, 4, 9, 8, 6, 1, 4, 2, 6, 0, 5, 1, 9, 0, 2, 2, 4, 2, 3, 7, 8, 4, 3, 2, 8, 5, 4, 6, 2, 3, 3, 3, 0, 8, 1, 3, 8, 0, 7, 0, 0, 4, 2, 8, 3, 1, 9, 4, 7, 5, 9, 3, 8, 5, 2, 3, 5, 5, 7, 5, 7, 1, 1, 7, 6
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 8 and then converted into base 10.
This constant is 8-normal.

Examples

			0.163264812105216797367094986142605190224237843285462333081380700428319475...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[8], 10, 100]]

A378333 Decimal expansion of the base 9 Champernowne constant.

Original entry on oeis.org

1, 4, 0, 6, 2, 4, 9, 7, 6, 1, 1, 9, 6, 9, 6, 7, 8, 2, 4, 7, 9, 6, 6, 9, 0, 0, 8, 9, 3, 5, 6, 6, 3, 1, 8, 3, 2, 6, 5, 4, 5, 7, 0, 8, 3, 2, 4, 6, 8, 2, 8, 4, 8, 6, 6, 5, 7, 5, 5, 5, 1, 7, 1, 2, 7, 5, 4, 1, 4, 9, 1, 4, 8, 7, 8, 1, 8, 5, 4, 9, 5, 2, 4, 3, 6, 4, 4
Offset: 0

Views

Author

Joshua Searle, Nov 25 2024

Keywords

Comments

This constant is formed by the concatenation of the natural numbers in base 9 and then converted into base 10.
This constant is 9-normal.

Examples

			0.140624976119696782479669008935663183265457083246828486657555171275414914...
		

Crossrefs

Cf. A030302, A003137, A030373, A031219, A030548, A030998, A054634, A031076, A033307 (base n expansions of base n Champernowne constants, without leading zero, for 2 <= n <= 10).
Cf. A066716, A077771, A378328, A378329, A378330, A378331, A378332, A378333, A033307 (decimal expansions of base n Champernowne constants for 2 <= n <= 10).
Cf. A066717, A077772, A378345, A378346, A378347, A378348, A378349, A378350, A030167 (continued fraction expansions of base n Champernowne constants for 2 <= n <= 10).

Programs

  • Mathematica
    First[RealDigits[ChampernowneNumber[9], 10, 100]]
Showing 1-10 of 11 results. Next