cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A107127 Numbers n such that (10^(2n+1)+54*10^n-1)/9 is prime.

Original entry on oeis.org

0, 3, 33, 311, 2933, 22235, 39165, 41585
Offset: 1

Views

Author

Farideh Firoozbakht, May 19 2005

Keywords

Comments

n is in the sequence iff the palindromic number 1(n).7.1(n) is prime (dot between numbers means concatenation). If n is in the sequence then n is not of the forms 3m+1, 6m, 6m+2, 7m+2, 16m+9, 16m+14, 18m+1, 18m+7, 22m+13, 22m+19, etc. (the proof is easy).
a(9) > 10^5. - Robert Price, Apr 30 2017

Examples

			3 is in the sequence because (10^(2*3+1)+54*10^3-1)/9=1(3).7.1(3)=1117111 is prime.
2933 is in the sequence because (10^(2*2933+1)+54*10^2933-1)/9=1(2933).7.1(2933) is prime.
		

References

  • C. Caldwell and H. Dubner, "Journal of Recreational Mathematics", Volume 28, No. 1, 1996-97, pp. 1-9.

Crossrefs

Programs

  • Mathematica
    Do[If[PrimeQ[(10^(2n + 1) + 54*10^n - 1)/9], Print[n]], {n, 3250}]
  • PARI
    for(n=0,1e4,if(ispseudoprime(t=(10^(2*n+1)+54*10^n)\9),print1(t", "))) \\ Charles R Greathouse IV, Jul 15 2011

Formula

a(n) = (A077789(n)-1)/2.

Extensions

Edited by Ray Chandler, Dec 28 2010
a(6)-a(8) from Robert Price, Apr 30 2017

A332117 a(n) = (10^(2n+1)-1)/9 + 6*10^n.

Original entry on oeis.org

7, 171, 11711, 1117111, 111171111, 11111711111, 1111117111111, 111111171111111, 11111111711111111, 1111111117111111111, 111111111171111111111, 11111111111711111111111, 1111111111117111111111111, 111111111111171111111111111, 11111111111111711111111111111, 1111111111111117111111111111111
Offset: 0

Views

Author

M. F. Hasler, Feb 09 2020

Keywords

Comments

See A107127 = {0, 3, 33, 311, 2933, ...} for the indices of primes.

Crossrefs

Cf. (A077789-1)/2 = A107127: indices of primes.
Cf. A002275 (repunits R_n = (10^n-1)/9), A011557 (10^n).
Cf. A138148 (cyclops numbers with binary digits), A002113 (palindromes).
Cf. A332127 .. A332197 (variants with different repeated digit 2, ..., 9).
Cf. A332112 .. A332119 (variants with different middle digit 2, ..., 9).

Programs

  • Maple
    A332117 := n -> (10^(2*n+1)-1)/9+6*10^n;
  • Mathematica
    Array[(10^(2 # + 1)-1)/9 + 6*10^# &, 15, 0]
  • PARI
    apply( {A332117(n)=10^(n*2+1)\9+6*10^n}, [0..15])
    
  • Python
    def A332117(n): return 10**(n*2+1)//9+6*10**n

Formula

a(n) = A138148(n) + 7*10^n = A002275(2n+1) + 6*10^n.
G.f.: (7 - 606*x + 500*x^2)/((1 - x)(1 - 10*x)(1 - 100*x)).
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3) for n > 2.
Showing 1-2 of 2 results.