A077816 Wieferich numbers (1): n > 1 such that 2^A000010(n) == 1 (mod n^2).
1093, 3279, 3511, 7651, 10533, 14209, 17555, 22953, 31599, 42627, 45643, 52665, 68859, 94797, 99463, 127881, 136929, 157995, 228215, 298389, 410787, 473985, 684645, 895167, 1232361, 2053935, 2685501, 3697083, 3837523, 6161805, 11512569
Offset: 1
Keywords
Examples
A077815(3279) = 2^A000010(3279) mod 3279^2 = 2^2184 mod 10751841 = 1, therefore 3279 is a term.
Links
- Max Alekseyev, Table of n, a(n) for n = 1..104 (all currently known terms)
- T. Agoh, K. Dilcher, and L. Skula, Fermat Quotients for Composite Moduli, Journal of Number Theory 66(1), 1997, 29-50. doi: 10.1006/jnth.1997.2162
- William D. Banks, Florian Luca, and Igor E. Shparlinski, Estimates for Wieferich Numbers, The Ramanujan Journal, December 2007, Volume 14, Issue 3, pp 361-378.
- R. Crandall, K. Dilcher, and C. Pomerance, A search for Wieferich and Wilson primes, Mathematics of Computation, Volume 66, 1997.
- R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001, p. 28.
- Jiří Klaška, A Simple Proof of Skula's Theorem on Prime Power Divisors of Mersenne Numbers, J. Int. Seq., Vol. 25 (2022), Article 22.4.3.
- Jiří Klaška, Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem, J. Int. Seq., Vol. 26 (2023), Article 23.3.8.
Programs
-
Magma
[n: n in [1..8*10^5] | 2^EulerPhi(n) mod n^2 eq 1]; // Vincenzo Librandi, Dec 05 2015
-
Mathematica
Reap[For[k = 1, k <= 10^8, k++, If[PowerMod[2, EulerPhi[k], k^2] == 1, Print[k]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Nov 17 2021 *)
-
PARI
for(n=2, 10^9, if(Mod(2, n^2)^(eulerphi(n))==1, print1(n, ", "))); \\ Felix Fröhlich, May 27 2014
Extensions
More terms from Emeric Deutsch, Mar 05 2005
More terms from Sam Handler (sam_5_5_5_0(AT)yahoo.com), Jun 18 2005
Comments