cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077866 Expansion of (1-x)^(-1)/(1 - x - 2*x^2 + 2*x^3).

Original entry on oeis.org

1, 2, 5, 8, 15, 22, 37, 52, 83, 114, 177, 240, 367, 494, 749, 1004, 1515, 2026, 3049, 4072, 6119, 8166, 12261, 16356, 24547, 32738, 49121, 65504, 98271, 131038, 196573, 262108, 393179, 524250, 786393, 1048536, 1572823, 2097110, 3145685, 4194260, 6291411, 8388562
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

Equals triangle A122196 * [1,2,4,8,16,...]. - Gary W. Adamson, Nov 29 2008
Conjecture: let b(n) be the number of subsets S of {1,2,...,n} having more than one element such that (sum of least two elements of S) = max(S). Then b(0) = b(1) = b(2) = 0 and b(n+3) = a(n) for n >= 0. - Clark Kimberling Sep 27 2022

Examples

			G.f. = 1 + 2*x + 5*x^2 + 8*x^3 + 15*x^4 + 22*x^5 + 37*x^6 + ... - _Michael Somos_, Aug 11 2021
		

Crossrefs

Bisections are A005803 and A050488.
Cf. A052551 (first differences), A122196.

Programs

  • Mathematica
    CoefficientList[Series[(1-x)^(-1)/(1-x-2x^2+2x^3),{x,0,50}],x] (* or *) LinearRecurrence[{2,1,-4,2},{1,2,5,8},50] (* Harvey P. Dale, Feb 16 2013 *)
  • PARI
    Vec((1-x)^(-1)/(1-x-2*x^2+2*x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012

Formula

a(n) = 2^(n/2)*(3 + 2*sqrt(2) + (3 - 2*sqrt(2))*(-1)^n) - n - 5. - Paul Barry, Apr 23 2004
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + 2*a(n-4); a(0)=1, a(1)=2, a(2)=5, a(3)=8. - Harvey P. Dale, Feb 16 2013
a(2n) = 3*2^(n+1) - 2(n+1) - 3 = A050488(n+1) and a(2n+1) = 2^(n+3) - 2(n+3) = A005803(n+3). Also, a(2n+1) - a(2n) = 2^(n+1) - 1 = a(2n) - a(2n - 1). - Gregory L. Simay, Feb 07 2021
E.g.f.: 6*cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x) - exp(x)*(5 + x). - Stefano Spezia, Feb 08 2021
G.f.: 1/((1 - x)^2 * (1 - 2*x^2)). - Michael Somos, Aug 11 2021