cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A077996 Expansion of (1-x)/(1-2*x-x^2-2*x^3).

Original entry on oeis.org

1, 1, 3, 9, 23, 61, 163, 433, 1151, 3061, 8139, 21641, 57543, 153005, 406835, 1081761, 2876367, 7648165, 20336219, 54073337, 143779223, 382304221, 1016534339, 2702931345, 7187005471, 19110010965, 50812890091, 135109802089, 359252516199, 955240614669
Offset: 0

Views

Author

N. J. A. Sloane, Nov 17 2002

Keywords

Comments

From Greg Dresden and Hanzhang Fang, Aug 12 2022: (Start)
a(n) is also the number of ways to tile a long box of dimensions 2 X 2 X n with "plates" (of dimension 2 X 2 X 1) and "hinges" (which are 2 X 2 X 1 plates with a 2 X 1 X 1 box added on top or bottom of the plate). The plates and hinges are shown here:
/ /| and / /|
/___/ / /___/ |
|___|/ |_ | /
|_|/
(End)

Programs

  • GAP
    a:=[1,1,3];; for n in [4..30] do a[n]:=2*a[n-1]+a[n-2]+2*a[n-3]; od; a; # G. C. Greubel, Jun 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1-2*x-x^2-2*x^3) )); // G. C. Greubel, Jun 27 2019
    
  • Mathematica
    LinearRecurrence[{2,1,2}, {1,1,3}, 40] (* or *) CoefficientList[Series[(1 -x)/(1-2*x-x^2-2*x^3), {x,0,40}], x] (* G. C. Greubel, Jun 27 2019 *)
  • Maxima
    a(n):=sum(sum((sum(binomial(j,-3*k+2*j+i)*2^(k-j)*binomial(k,j),j,0,k) )*binomial(n+k-i-1,k-1),i,k,n),k,1,n); /* Vladimir Kruchinin, May 05 2011 */
    
  • PARI
    Vec((1-x)/(1-2*x-x^2-2*x^3)+O(x^40)) \\ Charles R Greathouse IV, Sep 27 2012
    
  • Sage
    ((1-x)/(1-2*x-x^2-2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jun 27 2019
    

Formula

If p[1]=1, p[2]=2, p[i]=4, (i>2), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, May 02 2010
a(n) = Sum_{k=1..n} Sum_{i=k..n} Sum_{j=0..k} binomial(j,-3*k+2*j+i) * 2^(k-j)*binomial(k,j)*binomial(n+k-i-1,k-1). - Vladimir Kruchinin, May 05 2011