cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A141576 a(0)=-1, a(1)=0, a(2)=1, a(n) = a(n-1) - 2*a(n-2) + a(n-3).

Original entry on oeis.org

-1, 0, 1, 0, -2, -1, 3, 3, -4, -7, 4, 14, -1, -25, -9, 40, 33, -56, -82, 63, 171, -37, -316, -71, 524, 350, -769, -945, 943, 2064, -767, -3952, -354, 6783, 3539, -10381, -10676, 13625, 24596, -13330, -48897, 2359, 86823, 33208, -138079, -117672, 191694
Offset: 0

Views

Author

Matt Wynne (mattwyn(AT)verizon.net), Aug 18 2008

Keywords

Examples

			G.f. = -1 + x^2 - 2*x^4 - x^5 + 3*x^6 + 3*x^7 - 4*x^8 - 7*x^9 + ...
		

References

  • Martin Gardner, Mathematical Circus, Random House, New York, 1981, p. 165.

Crossrefs

Programs

  • MATLAB
    function y=fib(n)
    %Generates difference sequence
    fz(1)=-1; fz(2)=0; fz(3)=1;
    for k=4:n
    fz(k)=fz(k-1)-2*fz(k-2)+fz(k-3);
    end
    y=fz(n);
    
  • Magma
    I:=[-1,0,1]; [n le 3 select I[n] else Self(n-1) -2*Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Sep 16 2024
    
  • Mathematica
    Nest[Append[#, #[[-1]] - 2 #[[-2]] + #[[-3]]] &, {-1, 0, 1}, 44] (* Michael De Vlieger, Dec 17 2017 *)
    LinearRecurrence[{1,-2,1},{-1,0,1},50] (* Harvey P. Dale, Feb 06 2024 *)
  • PARI
    x='x+O('x^99); Vec((1-x+x^2)/(-1+x-2*x^2+x^3)) \\ Altug Alkan, Dec 17 2017
    
  • SageMath
    def A141576_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( -(1-x+x^2)/(1-x+2*x^2-x^3) ).list()
    A141576_list(50) # G. C. Greubel, Sep 16 2024

Formula

From R. J. Mathar, Aug 25 2008: (Start)
O.g.f.: -(1-x+x^2)/(1-x+2*x^2-x^3).
a(n) = A078019(n-2), n > 0. (End)
a(n) = -A000931(-2*n + 3). - Michael Somos, Sep 18 2012

Extensions

Extended by R. J. Mathar, Aug 25 2008
Showing 1-1 of 1 results.