A078039 Expansion of (1 - x)/(1 + x - 2*x^2 + x^3).
1, -2, 4, -9, 19, -41, 88, -189, 406, -872, 1873, -4023, 8641, -18560, 39865, -85626, 183916, -395033, 848491, -1822473, 3914488, -8407925, 18059374, -38789712, 83316385, -178955183, 384377665, -825604416, 1773314929, -3808901426, 8181135700, -17572253481, 37743426307, -81069068969
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,2,-1).
Crossrefs
Cf. A002478.
Programs
-
Magma
[n le 3 select (-2)^(n-1) else -Self(n-1) +2*Self(n-2) -Self(n-3): n in [1..41]]; // G. C. Greubel, Jan 24 2023
-
Mathematica
LinearRecurrence[{-1,2,-1}, {1,-2,4}, 41] (* G. C. Greubel, Jan 24 2023 *)
-
PARI
Vec( (1-x)/(1+x-2*x^2+x^3)+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
-
PARI
my(p= Mod('x,'x^3+'x^2-2*'x+1)); a(n) = vecsum(Vec(lift(p^(n+4)))); \\ Kevin Ryde, Jan 28 2023
-
SageMath
@CachedFunction def a(n): # a = A078039 if(n<3): return (1,-2,4)[n] else: return -a(n-1) + 2*a(n-2) - a(n-3) [a(n) for n in range(41)] # G. C. Greubel, Jan 24 2023
Formula
a(n) = -a(n-1) + 2*a(n-2) - a(n-3). - Paul Curtz, Feb 10 2008
Comments