Original entry on oeis.org
1, 1, 3, 6, 13, 28, 60, 129, 277, 595, 1278, 2745, 5896, 12664, 27201, 58425, 125491, 269542, 578949, 1243524, 2670964, 5736961, 12322413, 26467299, 56849086, 122106097, 262271568, 563332848, 1209982081, 2598919345, 5582216355, 11990037126, 25753389181
Offset: 0
a(3)=6 as there is one tiling of a 3 X 3 region with only 1 X 1 tiles, 4 tilings with exactly one 2 X 2 tile and 1 tiling consisting of the 3 X 3 tile.
- Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
- L. Euler, (E388) Vollstaendige Anleitung zur Algebra, Zweiter Theil, reprinted in: Opera Omnia. Teubner, Leipzig, 1911, Series (1), Vol. 1, p. 322.
- S. Heubach, Tiling an m X n Area with Squares of Size up to k X k (m<=5), Congressus Numerantium 140 (1999), pp. 43-64.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..300
- Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
- Emeric Deutsch, Counting tilings with L-tiles and squares, Problem 10877, Amer. Math. Monthly, 110 (March 2003), 245-246.
- Kenneth Edwards and Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, arXiv:1907.06517 [math.CO], 2019.
- Leonhard Euler, Vollstaendige Anleitung zur Algebra, Zweiter Teil.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 412
- Milan Janjić, Pascal Triangle and Restricted Words, arXiv:1705.02497 [math.CO], 2017.
- Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
- Richard J. Mathar, Paving Rectangular Regions with Rectangular Tiles: Tatami and Non-Tatami Tilings, arXiv:1311.6135 [math.CO], 2013, Table 19 (halved...).
- Richard J. Mathar, Bivariate Generating Functions Enumerating Non-Bonding Dominoes on Rectangular Boards, arXiv:2404.18806 [math.CO], 2024. See p. 5.
- Sam Northshield, Some generalizations of a formula of Reznick, SUNY Plattsburgh (2022).
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Murray Tannock, Equivalence classes of mesh patterns with a dominating pattern, MSc Thesis, Reykjavik Univ., May 2016. See Appendix B2.
- Index entries for linear recurrences with constant coefficients, signature (1,2,1).
-
I:=[1,1,3]; [n le 3 select I[n] else Self(n-1) +2*Self(n-2) +Self(n-3): n in [1..41]]; // G. C. Greubel, Apr 14 2023
-
f[A_]:= Module[{til = A}, AppendTo[til, A[[-1]] + 2A[[-2]] + A[[-3]]]]; NumOfTilings[ n_ ]:= Nest[ f, {1,1,3}, n-2]; NumOfTilings[30]
LinearRecurrence[{1,2,1},{1,1,3},40] (* Vladimir Joseph Stephan Orlovsky, Jan 28 2012 *)
CoefficientList[Series[1/(1-x-2x^2-x^3),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
-
a(n)=([0,1,0; 0,0,1; 1,2,1]^n*[1;1;3])[1,1] \\ Charles R Greathouse IV, Apr 08 2016
-
@CachedFunction
def a(n): # A002478
if (n<3): return (1,1,3)[n]
else: return sum(binomial(2,j)*a(n-j) for j in range(1,4))
[a(n) for n in (0..40)] # G. C. Greubel, Apr 14 2023
Additional comments from Silvia Heubach (silvi(AT)cine.net), Apr 21 2000
A297224
T(n,k)=Number of nXk 0..1 arrays with every 1 horizontally or antidiagonally adjacent to 1 neighboring 1s.
Original entry on oeis.org
1, 2, 1, 3, 4, 1, 4, 8, 9, 1, 6, 16, 24, 19, 1, 9, 33, 57, 68, 41, 1, 13, 69, 182, 207, 196, 88, 1, 19, 145, 535, 997, 751, 564, 189, 1, 28, 300, 1513, 4210, 5570, 2720, 1620, 406, 1, 41, 624, 4415, 16658, 33158, 30946, 9861, 4660, 872, 1, 60, 1300, 12832, 68769, 178469
Offset: 1
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..1..1..0
..0..0..1..0. .0..0..0..0. .0..1..0..0. .0..1..0..0. .0..0..0..0
..0..1..0..0. .0..1..0..0. .1..0..0..0. .1..0..0..0. .0..1..0..0
..0..1..1..0. .1..0..0..1. .0..1..1..0. .0..0..1..1. .1..0..0..0
..0..0..0..0. .0..0..1..0. .0..0..1..1. .0..0..0..0. .0..1..1..0
A141015
a(0) = 0, a(1) = 1, a(2) = 2; for n > 2, a(n) = a(n-1) + 2*a(n-2) + a(n-3).
Original entry on oeis.org
0, 1, 2, 4, 9, 19, 41, 88, 189, 406, 872, 1873, 4023, 8641, 18560, 39865, 85626, 183916, 395033, 848491, 1822473, 3914488, 8407925, 18059374, 38789712, 83316385, 178955183, 384377665, 825604416, 1773314929, 3808901426
Offset: 0
-
CoefficientList[Series[x (1 + x)/(1 - x - 2 x^2 - x^3), {x,0,50}], x] (* G. C. Greubel, Jun 09 2017 *)
-
x='x+O('x^50); concat([0], Vec(x*(1+x)/(1-x-2*x^2-x^3))) \\ G. C. Greubel, Jun 09 2017
-
from sage.combinat.sloane_functions import recur_gen3; it = recur_gen3(0,1,2,1,2,1); [next(it) for i in range(31)] # Zerinvary Lajos, May 17 2009
Dysfunctional Maple program removed by
R. J. Mathar, Oct 28 2009
A228482
T(n,k)=Number of nXk binary arrays with top left value 1 and no two ones adjacent horizontally, vertically or antidiagonally.
Original entry on oeis.org
1, 1, 1, 2, 2, 2, 3, 4, 4, 3, 5, 9, 14, 9, 5, 8, 19, 41, 41, 19, 8, 13, 41, 127, 172, 127, 41, 13, 21, 88, 386, 728, 728, 386, 88, 21, 34, 189, 1181, 3084, 4354, 3084, 1181, 189, 34, 55, 406, 3605, 13050, 25699, 25699, 13050, 3605, 406, 55, 89, 872, 11013, 55252, 152373
Offset: 1
Some solutions for n=4 k=4
..1..0..0..1....1..0..1..0....1..0..0..1....1..0..1..0....1..0..1..0
..0..0..0..0....0..0..0..1....0..1..0..0....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..0..0....0..0..1..0....0..1..0..0....0..0..0..0
..0..0..0..0....0..1..0..0....0..0..0..1....0..0..1..0....1..0..0..0
A280069
T(n,k)=Number of nXk 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 5, 4, 3, 5, 9, 15, 15, 9, 5, 8, 19, 39, 52, 39, 19, 8, 13, 41, 104, 170, 170, 104, 41, 13, 21, 88, 281, 603, 790, 603, 281, 88, 21, 34, 189, 771, 2157, 3729, 3729, 2157, 771, 189, 34, 55, 406, 2122, 7777, 17468, 23564, 17468, 7777, 2122
Offset: 1
Some solutions for n=4 k=4
..0..1..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0. .0..0..0..0
..0..1..1..1. .0..1..1..0. .1..1..0..0. .0..0..0..0. .0..0..0..1
..0..0..0..1. .1..1..0..0. .1..1..1..0. .1..1..1..1. .1..1..1..1
..0..0..0..1. .1..1..0..0. .1..1..1..0. .1..1..1..1. .1..1..1..1
A300465
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3 or 4 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 4, 2, 4, 0, 0, 9, 8, 8, 9, 0, 0, 19, 22, 28, 22, 19, 0, 0, 41, 68, 142, 142, 68, 41, 0, 0, 88, 212, 540, 1146, 540, 212, 88, 0, 0, 189, 652, 2585, 7456, 7456, 2585, 652, 189, 0, 0, 406, 2017, 11343, 55663, 78195, 55663, 11343, 2017, 406, 0, 0
Offset: 1
Some solutions for n=5 k=4
..0..0..0..0. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..0..0
..0..1..0..0. .0..1..1..0. .0..0..1..1. .0..1..1..0. .0..1..0..0
..1..1..1..1. .1..1..0..0. .1..1..0..0. .1..1..0..1. .1..1..1..1
..1..0..1..1. .1..0..0..1. .1..0..0..1. .1..0..1..1. .0..0..0..1
..0..0..1..1. .0..0..1..1. .1..1..1..1. .0..0..1..1. .0..0..1..1
A300646
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 4 or 5 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 4, 2, 4, 0, 0, 9, 10, 10, 9, 0, 0, 19, 30, 64, 30, 19, 0, 0, 41, 104, 316, 316, 104, 41, 0, 0, 88, 340, 1789, 2998, 1789, 340, 88, 0, 0, 189, 1144, 9738, 28089, 28089, 9738, 1144, 189, 0, 0, 406, 3795, 54293, 268615, 456649, 268615, 54293, 3795
Offset: 1
Some solutions for n=5 k=4
..0..0..0..1. .0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..1
..0..0..1..1. .0..1..1..0. .0..1..0..1. .0..1..1..0. .0..0..1..1
..0..1..0..0. .0..1..0..0. .1..1..1..1. .1..1..0..0. .0..0..1..0
..1..1..0..0. .0..0..0..1. .1..0..1..1. .0..0..1..1. .1..1..0..0
..1..0..0..0. .0..0..1..1. .0..0..1..1. .0..1..1..1. .1..0..0..0
A300776
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 4 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 4, 3, 4, 0, 0, 9, 11, 11, 9, 0, 0, 19, 32, 36, 32, 19, 0, 0, 41, 102, 179, 179, 102, 41, 0, 0, 88, 330, 735, 1536, 735, 330, 88, 0, 0, 189, 1059, 3482, 10374, 10374, 3482, 1059, 189, 0, 0, 406, 3418, 15986, 78932, 116954, 78932, 15986, 3418
Offset: 1
Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0. .0..0..1..1
..0..0..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..0. .0..1..1..1
..0..0..1..0. .1..0..0..1. .0..1..1..1. .0..1..0..1. .0..0..0..0
..1..1..0..0. .1..0..0..1. .0..0..0..1. .0..0..1..1. .0..0..0..0
..1..0..0..0. .1..1..1..1. .0..0..1..1. .0..1..1..1. .0..0..0..0
A301400
T(n,k)=Number of nXk 0..1 arrays with every element equal to 2, 3, 4, 5 or 6 horizontally, vertically or antidiagonally adjacent elements, with upper left element zero.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 2, 2, 0, 0, 4, 3, 4, 0, 0, 9, 13, 13, 9, 0, 0, 19, 44, 78, 44, 19, 0, 0, 41, 156, 446, 446, 156, 41, 0, 0, 88, 554, 2619, 4857, 2619, 554, 88, 0, 0, 189, 1963, 15538, 49325, 49325, 15538, 1963, 189, 0, 0, 406, 6964, 92338, 521514, 885003, 521514
Offset: 1
Some solutions for n=5 k=4
..0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..1..1. .0..0..0..0
..0..0..1..1. .0..0..1..1. .0..1..1..1. .0..0..1..1. .0..0..0..0
..0..0..1..0. .0..0..1..0. .1..1..0..0. .0..0..0..0. .1..1..0..0
..0..1..0..0. .0..0..0..0. .1..0..0..1. .0..1..0..0. .1..0..1..1
..1..1..0..0. .0..0..0..0. .0..0..1..1. .1..1..0..0. .0..0..1..1
A099509
Triangle, read by rows, of trinomial coefficients arranged so that there are n+1 terms in row n by setting T(n,k) equal to the coefficient of z^k in (1 + z + z^2)^(n-[k/2]), for n>=k>=0, where [k/2] is the integer floor of k/2.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 2, 1, 4, 6, 7, 1, 1, 5, 10, 16, 6, 3, 1, 6, 15, 30, 19, 16, 1, 1, 7, 21, 50, 45, 51, 10, 4, 1, 8, 28, 77, 90, 126, 45, 30, 1, 1, 9, 36, 112, 161, 266, 141, 126, 15, 5, 1, 10, 45, 156, 266, 504, 357, 393, 90, 50, 1, 1, 11, 55, 210, 414, 882, 784, 1016, 357
Offset: 0
Rows begin:
[1],
[1,1],
[1,2,1],
[1,3,3,2],
[1,4,6,7,1],
[1,5,10,16,6,3],
[1,6,15,30,19,16,1],
[1,7,21,50,45,51,10,4],
[1,8,28,77,90,126,45,30,1],
[1,9,36,112,161,266,141,126,15,5],...
and can be derived from coefficients of (1+z+z^2)^n:
[1],
[1,1,1],
[1,2,3,2,1],
[1,3,6,7,6,3,1],
[1,4,10,16,19,16,10,4,1],
[1,5,15,30,45,51,45,30,15,5,1],...
by shifting each column k down by [k/2] rows.
Showing 1-10 of 14 results.
Comments