A077460
Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times.
Original entry on oeis.org
1, 1, 1, 3, 12, 70, 464, 3482, 27779, 233556, 2038484, 18357672, 169599492, 1601270562, 15401735750, 150547249932, 1492451793728, 14980801247673, 152047178479946, 1558569469867824, 16119428039548246
Offset: 0
A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points.
For n = 2, 4, 6, 8 the solutions are as follows:
n=2: 1 2
n=4: 1 2 3 4
n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6
n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8, 1 2 7 4 5 6 3 8, 1 4 3 2 7 6 5 8
-
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]];
A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {, }][[All, 2]];
a[0] = a[1] = 1;
a[n_] := If[OddQ[n], (A005316[[n + 1]] + A005316[[2n]] + A000682[[n]])/4, (A005316[[2n]] + 2 A005316[[n + 1]])/4];
a /@ Range[0, 20] (* Jean-François Alcover, Sep 06 2019, after Andrew Howroyd *)
A078105
Number of nonisomorphic ways a loop can cross three roads meeting in a Y n times (orbits under symmetry group of order 6).
Original entry on oeis.org
1, 0, 1, 1, 2, 1, 8, 8, 48, 54, 331, 439, 2558, 3734, 21057, 33384, 182293, 307719, 1638465, 2913775, 15181584, 28194412, 144206012, 277887666, 1398566992
Offset: 0
With three crossings the loop must cut each road exactly once, so a(3) = 1.
With 4 crossings the loop can cut one road 4 times (one possibility), or two roads twice each (one possibility), so a(4) = 2.
A078591
Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times.
Original entry on oeis.org
1, 1, 1, 4, 21, 131, 914, 6910, 55477, 466729, 4076430, 36712325, 339195058, 3202515525, 30803440806, 301094270964, 2984903334517, 29961600364523, 304094354787062, 3117138919265903, 32238856059792302, 336132907436386486, 3530470987229030696, 37330864330583904876, 397168915877285183906
Offset: 0
A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points.
For n = 2, 4, 6, 8 the solutions are as follows:
n=2: 1 2
n=4: 1 2 3 4
n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6, 1 4 3 2 5 6
n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8,
n=8 (cont.): 1 2 5 4 3 6 7 8, 1 2 3 8 7 6 5 4, 1 2 5 4 3 8 7 6, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8,
n=8 (cont.): 1 2 7 4 5 6 3 8, 1 4 3 2 5 6 7 8, 1 4 5 6 3 2 7 8, 1 4 3 2 5 8 7 6, 1 4 3 2 7 6 5 8, 1 6 5 4 3 2 7 8, 1 6 5 2 3 4 7 8, 1 6 3 4 5 2 7 8,
-
A005315 = Cases[Import["https://oeis.org/A005315/b005315.txt", "Table"], {, }][[All, 2]];
a[n_] := If[n < 3, 1, A005315[[n+1]]/2];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Aug 10 2022, after Andrew Howroyd *)
A085919
Number of ways a loop can cross three roads meeting in a Y n times.
Original entry on oeis.org
3, 0, 3, 1, 9, 6, 45, 42, 279, 320, 1977, 2610, 15306, 22404, 126300, 200158, 1093515, 1846314, 9830547, 17481864
Offset: 0
With three crossings the loop must cut each road exactly once, so a(3) = 1.
Similar to
A078104, but without the constraint of touching the (-, -) quadrant.
Showing 1-4 of 4 results.
Comments