A077460
Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times.
Original entry on oeis.org
1, 1, 1, 3, 12, 70, 464, 3482, 27779, 233556, 2038484, 18357672, 169599492, 1601270562, 15401735750, 150547249932, 1492451793728, 14980801247673, 152047178479946, 1558569469867824, 16119428039548246
Offset: 0
A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points.
For n = 2, 4, 6, 8 the solutions are as follows:
n=2: 1 2
n=4: 1 2 3 4
n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6
n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8, 1 2 7 4 5 6 3 8, 1 4 3 2 7 6 5 8
-
A000682 = Import["https://oeis.org/A000682/b000682.txt", "Table"][[All, 2]];
A005316 = Cases[Import["https://oeis.org/A005316/b005316.txt", "Table"], {, }][[All, 2]];
a[0] = a[1] = 1;
a[n_] := If[OddQ[n], (A005316[[n + 1]] + A005316[[2n]] + A000682[[n]])/4, (A005316[[2n]] + 2 A005316[[n + 1]])/4];
a /@ Range[0, 20] (* Jean-François Alcover, Sep 06 2019, after Andrew Howroyd *)
A078104
Number of ways a loop can cross three roads meeting in a Y n times. The loop must touch the southwest sector.
Original entry on oeis.org
1, 0, 2, 1, 7, 6, 37, 42, 237, 320, 1715, 2610, 13478, 22404, 112480, 200158, 982561, 1846314, 8897089, 17481864
Offset: 0
With three crossings the loop must cut each road exactly once, so a(3) = 1.
With 4 crossings the loop can cut one road 4 times (giving A005315(2)*2 = 4 possibilities), or two roads twice each (3 ways), so a(4) = 7.
More terms added Aug 25 2003
A078591
Number of nonisomorphic ways a loop can cross a road (running East-West) 2n times.
Original entry on oeis.org
1, 1, 1, 4, 21, 131, 914, 6910, 55477, 466729, 4076430, 36712325, 339195058, 3202515525, 30803440806, 301094270964, 2984903334517, 29961600364523, 304094354787062, 3117138919265903, 32238856059792302, 336132907436386486, 3530470987229030696, 37330864330583904876, 397168915877285183906
Offset: 0
A meander can be specified by marking 2n equally spaced points along a line and recording the order in which the meander visits the points.
For n = 2, 4, 6, 8 the solutions are as follows:
n=2: 1 2
n=4: 1 2 3 4
n=6: 1 2 3 4 5 6, 1 2 3 6 5 4, 1 2 5 4 3 6, 1 4 3 2 5 6
n=8: 1 2 3 4 5 6 7 8, 1 2 3 4 5 8 7 6, 1 2 3 4 7 6 5 8, 1 2 7 6 3 4 5 8, 1 2 3 6 7 8 5 4, 1 2 3 6 5 4 7 8,
n=8 (cont.): 1 2 5 4 3 6 7 8, 1 2 3 8 7 6 5 4, 1 2 5 4 3 8 7 6, 1 2 7 6 5 4 3 8, 1 2 3 8 5 6 7 4, 1 2 3 8 7 4 5 6, 1 2 5 6 7 4 3 8,
n=8 (cont.): 1 2 7 4 5 6 3 8, 1 4 3 2 5 6 7 8, 1 4 5 6 3 2 7 8, 1 4 3 2 5 8 7 6, 1 4 3 2 7 6 5 8, 1 6 5 4 3 2 7 8, 1 6 5 2 3 4 7 8, 1 6 3 4 5 2 7 8,
-
A005315 = Cases[Import["https://oeis.org/A005315/b005315.txt", "Table"], {, }][[All, 2]];
a[n_] := If[n < 3, 1, A005315[[n+1]]/2];
Table[a[n], {n, 0, 28}] (* Jean-François Alcover, Aug 10 2022, after Andrew Howroyd *)
A085919
Number of ways a loop can cross three roads meeting in a Y n times.
Original entry on oeis.org
3, 0, 3, 1, 9, 6, 45, 42, 279, 320, 1977, 2610, 15306, 22404, 126300, 200158, 1093515, 1846314, 9830547, 17481864
Offset: 0
With three crossings the loop must cut each road exactly once, so a(3) = 1.
Similar to
A078104, but without the constraint of touching the (-, -) quadrant.
Showing 1-4 of 4 results.
Comments