cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078122 Infinite lower triangular matrix, M, that satisfies [M^3](i,j) = M(i+1,j+1) for all i,j>=0 where [M^n](i,j) denotes the element at row i, column j, of the n-th power of matrix M, with M(0,k)=1 and M(k,k)=1 for all k>=0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 12, 9, 1, 1, 93, 117, 27, 1, 1, 1632, 3033, 1080, 81, 1, 1, 68457, 177507, 86373, 9801, 243, 1, 1, 7112055, 24975171, 15562314, 2371761, 88452, 729, 1, 1, 1879090014, 8786827629, 6734916423, 1291958181, 64392813, 796797, 2187, 1
Offset: 0

Views

Author

Paul D. Hanna, Nov 18 2002

Keywords

Comments

M also satisfies: [M^(3k)](i,j) = [M^k](i+1,j+1) for all i,j,k >=0; thus [M^(3^n)](i,j) = M(i+n,j+n) for all n >= 0.
Conjecture: the sum of the n-th row equals the number of partitions of 3^n into powers of 3 (A078125).

Examples

			The cube of the matrix is the same matrix excluding the first row and column:
  [1, 0, 0, 0]^3 = [ 1,  0, 0, 0]
  [1, 1, 0, 0]     [ 3,  1, 0, 0]
  [1, 3, 1, 0]     [12,  9, 1, 0]
  [1,12, 9, 1]     [93,117,27, 1]
		

Crossrefs

Programs

  • Maple
    S:= proc(i, j) option remember;
           add(M(i, k)*M(k, j), k=0..i)
        end:
    M:= proc(i, j) option remember; `if`(j=0 or i=j, 1,
           add(S(i-1, k)*M(k, j-1), k=0..i-1))
        end:
    seq(seq(M(n,k), k=0..n), n=0..10);  # Alois P. Heinz, Feb 27 2015
  • Mathematica
    m[i_, j_] := m[i, j]=If[j==0||i==j, 1, m3[i-1, j-1]]; m2[i_, j_] := m2[i, j]=Sum[m[i, k]m[k, j], {k, j, i}]; m3[i_, j_] := m3[i, j]=Sum[m[i, k]m2[k, j], {k, j, i}]; Flatten[Table[m[i, j], {i, 0, 8}, {j, 0, i}]]

Formula

M(1, j) = A078124(j), M(j+1, j)=3^j, M(j+2, j) = A016142(j).
M(n, k) = the coefficient of x^(3^n - 3^(n-k)) in the power series expansion of 1/Product_{j=0..n-k}(1-x^(3^j)) whenever 0<=k0 (conjecture).