A078125 Number of partitions of 3^n into powers of 3.
1, 2, 5, 23, 239, 5828, 342383, 50110484, 18757984046, 18318289003448, 47398244089264547, 329030840161393127681, 6190927493941741957366100, 318447442589056401640929570896, 45106654667152833836835578059359839
Offset: 0
Keywords
Examples
Square of A078122 = A078123 as can be seen by 4 X 4 submatrix: [1,_0,_0,0]^2=[_1,_0,_0,_0] [1,_1,_0,0]___[_2,_1,_0,_0] [1,_3,_1,0]___[_5,_6,_1,_0] [1,12,_9,1]___[23,51,18,_1] To obtain t_3(5,2) we use the table T, defined as T[i,j]= t_3(i,j), for i=1,2,...,5(=n), and j= 0,1,2,...,162(= k.m^{n-1}). It is: 1,2,3,4,5,6,7,8,...,162; 1,5,12,22,35,51,...,4510; (this row contains the first 55 members of A000326 - the pentagonal numbers) 1,23,93,238,485,...,29773; 1,239,1632,5827,15200,32856,62629; 1,5828,68457; Column 1 contains the first 5 members of this sequence. - _Valentin Bakoev_, Feb 22 2009
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
- V. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.
Crossrefs
Programs
-
Haskell
import Data.MemoCombinators (memo2, list, integral) a078125 n = a078125_list !! n a078125_list = f [1] where f xs = (p' xs $ last xs) : f (1 : map (* 3) xs) p' = memo2 (list integral) integral p p 0 = 1; p [] = 0 p ks'@(k:ks) m = if m < k then 0 else p' ks' (m - k) + p' ks m -- Reinhard Zumkeller, Nov 27 2015
-
Mathematica
m[i_, j_] := m[i, j]=If[j==0||i==j, 1, m3[i-1, j-1]]; m2[i_, j_] := m2[i, j]=Sum[m[i, k]m[k, j], {k, j, i}]; m3[i_, j_] := m3[i, j]=Sum[m[i, k]m2[k, j], {k, j, i}]; a[n_] := m2[n, 0]
Formula
Denote the sum m^n + m^n + ... + m^n, k times, by k*m^n (m > 1, n > 0 and k are natural numbers). The general formula for the number of all partitions of the sum k*m^n into powers of m is t_m(n, k)= k+1 if n=1, t_m(n, k)= 1 if k=0, and t_m(n, k)= t_m(n, k-1) + t_m(n-1, k*m) if n > 1 and k > 0. a(n) is obtained for m=3 and n=1,2,3,... - Valentin Bakoev, Feb 22 2009
a(n) = [x^(3^n)] 1/Product_{j>=0} (1-x^(3^j)). - Alois P. Heinz, Sep 27 2011
Comments