cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A078221 a(1) = 1, a(n+1) > a(n) is the smallest multiple of a(n) using only odd digits.

Original entry on oeis.org

1, 3, 9, 99, 9999, 99999999, 9999999999999999, 99999999999999999999999999999999, 9999999999999999999999999999999999999999999999999999999999999999
Offset: 1

Views

Author

Amarnath Murthy, Nov 22 2002

Keywords

Crossrefs

Cf. A078222.

Programs

  • Maple
    1,3,seq(10^(2^(n-3))-1,n=3..11);
  • Python
    def A078221(n): return 2*n-1 if n < 3 else 10**(2**(n-3)) - 1 # Chai Wah Wu, Jan 12 2022

Formula

a(n) = 10^(2^(n-3)) - 1 for n >= 3. (Proof by induction. Consider a(n)*f, L = ceiling(log(f)/log(10)), g1 = number formed by the first L digits of a(n)*f, g2 = number formed by the last L digits of a(n)*f => g1 + g2 = number formed by L 9's, if L <= 10^(2^(n-2)) + 1). - Sascha Kurz, Jan 04 2003

Extensions

More terms from Sascha Kurz, Jan 04 2003

A078223 a(1) = 2, a(n+1) > a(n) is the smallest multiple of a(n) using only even digits but not divisible by 10 (i.e., having no trailing zeros).

Original entry on oeis.org

2, 4, 8, 24, 48, 288, 864, 6048, 260064, 26266464, 40082624064, 866826828008064, 26444286042042008448, 20286626620462624006244884224, 22488068646246262608620204848404846444288, 284860000088022466828484860444044822420060828284646488064
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Block[{k = 2, b = a[n - 1], c = 2 Range[0, 4]}, While[Mod[k*b,10]==0 || Union@ Join[c, IntegerDigits[k*b]] != c, k++]; k*b]; a[1] = 2; Array[a,14] (* Robert G. Wilson v, May 26 2014 *)

Extensions

More terms from Sascha Kurz, Jan 06 2003
a(14) from Jon E. Schoenfield, Jun 04 2007
a(15) from Chai Wah Wu, Nov 20 2019
a(16) from Chai Wah Wu, Nov 29 2019

A078224 a(n) = A078223(n+1)/A078223(n).

Original entry on oeis.org

2, 2, 3, 2, 6, 3, 7, 43, 101, 1526, 21626, 30507, 767145938, 1108516909537, 12667161621083528
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(9) = A078223(10) / A078223(9) = 26266464 / 260064 = 101.
		

Crossrefs

Extensions

More terms from Jon E. Schoenfield, Jun 04 2007
a(14) from Chai Wah Wu, Nov 20 2019
a(15) from Chai Wah Wu, Nov 29 2019

A078225 a(n) = A078221(n+1)/A078221(n).

Original entry on oeis.org

3, 3, 11, 101, 10001, 100000001, 10000000000000001, 100000000000000000000000000000001, 10000000000000000000000000000000000000000000000000000000000000001
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Programs

Formula

For n>2, a(n) = 10^(2^(n-3))+1

Extensions

More terms from R. J. Mathar, Feb 03 2007, using the formula for A078221
a(5) corrected by Max Alekseyev, Aug 21 2013

A078226 a(1) = 1, a(n+1) is the smallest odd multiple of a(n) (other than a(n) itself) in which the digits are alternately even and odd.

Original entry on oeis.org

1, 3, 9, 27, 81, 567, 8505, 76545, 9874305, 6763898925, 41672381276925, 25432529276163496725, 6947294789656341278149816125, 2341412581496361870123890149638785410125
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(6) = 567 = 7*a(5); the digits alternate odd, even, odd.
		

Crossrefs

Programs

  • Maple
    isA030141 := proc(n) local dgs,i ; dgs := convert(n,base,10) ; for i from 1 to nops(dgs)-1 do if ( op(i,dgs)+op(i+1,dgs)) mod 2 = 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: A078226 := proc(nmax) local a,f; a := [1] ; while nops(a) < nmax do f := 3 ; while true do if isA030141(f*op(-1,a)) then a := [op(a),f*op(-1,a)] ; print(op(-1,a)) ; break ; fi ; f := f+2 ; od ; od ; end: A078226(13) ; # R. J. Mathar, Mar 01 2007
  • Python
    A078226_list = [1]
    for _ in range(20):
        x = A078226_list[-1]
        y, x2 = x, 2*x
        while True:
            y += x2
            s = str(y)
            for j in range(len(s)-1, -1, -2):
                if not s[j] in ('1', '3', '5', '7', '9'):
                    break
            else:
                for k in range(len(s)-2, -1, -2):
                    if not s[k] in ('0', '2', '4', '6', '8'):
                        break
                else:
                    A078226_list.append(y)
                    break
    # Chai Wah Wu, Nov 06 2014

Extensions

More terms from Sascha Kurz, Jan 30 2003
a(12) from R. J. Mathar, Mar 01 2007
a(13), a(14) from Max Alekseyev, May 12 2010

A078227 a(1) = 2, a(n+1) is the smallest multiple of a(n) such that the digits are alternately odd and even. The unit digit is always even and parity alternates.

Original entry on oeis.org

2, 4, 8, 16, 32, 96, 672, 45696, 2787456, 270383232, 507238943232, 27274745216527872, 141232121898569036783616, 216567470725252501672125832323072
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(7) = 672 = 7*a(6) = 7*96. Starting with the unit digit the digits in 672 are alternately even and odd.
		

Crossrefs

Programs

  • Maple
    isAltr := proc(n) local nshft,osgn,sgn ; nshft := n ; osgn := ( n mod 10 ) mod 2 ; while nshft >= 10 do nshft := floor(nshft/10) ; sgn := ( nshft mod 10 ) mod 2 ; if sgn = osgn then RETURN(false) ; fi ; osgn := sgn ; od ; RETURN(true) ; end: A078227 := proc(prev) local m; m := 2 ; while true do if isAltr(m*prev) then RETURN(m*prev) ; fi ; m := m+1 ; od ; end: n := 2 : while true do print(n) ; n := A078227(n) : od : # R. J. Mathar, Nov 12 2006
  • Python
    A078227_list = [2]
    for _ in range(20):
        x = A078227_list[-1]
        y = x
        while True:
            y += x
            s = str(y)
            for j in range(len(s)-1,-1,-2):
                if not s[j] in ('0','2','4','6','8'):
                    break
            else:
                for k in range(len(s)-2,-1,-2):
                    if not s[k] in ('1','3','5','7','9'):
                        break
                else:
                    A078227_list.append(y)
                    break
    # Chai Wah Wu, Nov 06 2014

Extensions

More terms from R. J. Mathar, Nov 12 2006
a(13) and a(14) from Donovan Johnson, Mar 09 2008

A078228 a(n) = A078227(n+1)/A078227(n).

Original entry on oeis.org

2, 2, 2, 2, 3, 7, 68, 61, 97, 1876, 53771, 5178128, 1533415117
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Extensions

a(8)-a(13) from Donovan Johnson, Nov 11 2008

A078229 a(n) = A078226(n+1)/A078226(n).

Original entry on oeis.org

3, 3, 3, 3, 7, 15, 9, 129, 685, 6161, 610297, 273165705, 337025079889
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Extensions

More terms up to A078226(12)/A078226(11) Hagen von Eitzen, May 15 2009
a(12)-a(13) from Max Alekseyev, May 13 2010

A329765 a(n) = A329764(n+1)/A329764(n).

Original entry on oeis.org

3, 5, 5, 5, 25, 17, 449, 16705, 296065, 146689, 14510394113, 4406881562113
Offset: 1

Views

Author

Chai Wah Wu, Dec 04 2019

Keywords

Crossrefs

Showing 1-9 of 9 results.