cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A078225 a(n) = A078221(n+1)/A078221(n).

Original entry on oeis.org

3, 3, 11, 101, 10001, 100000001, 10000000000000001, 100000000000000000000000000000001, 10000000000000000000000000000000000000000000000000000000000000001
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Programs

Formula

For n>2, a(n) = 10^(2^(n-3))+1

Extensions

More terms from R. J. Mathar, Feb 03 2007, using the formula for A078221
a(5) corrected by Max Alekseyev, Aug 21 2013

A078223 a(1) = 2, a(n+1) > a(n) is the smallest multiple of a(n) using only even digits but not divisible by 10 (i.e., having no trailing zeros).

Original entry on oeis.org

2, 4, 8, 24, 48, 288, 864, 6048, 260064, 26266464, 40082624064, 866826828008064, 26444286042042008448, 20286626620462624006244884224, 22488068646246262608620204848404846444288, 284860000088022466828484860444044822420060828284646488064
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = Block[{k = 2, b = a[n - 1], c = 2 Range[0, 4]}, While[Mod[k*b,10]==0 || Union@ Join[c, IntegerDigits[k*b]] != c, k++]; k*b]; a[1] = 2; Array[a,14] (* Robert G. Wilson v, May 26 2014 *)

Extensions

More terms from Sascha Kurz, Jan 06 2003
a(14) from Jon E. Schoenfield, Jun 04 2007
a(15) from Chai Wah Wu, Nov 20 2019
a(16) from Chai Wah Wu, Nov 29 2019

A078222 a(1) = 2, a(n+1) > a(n) is the smallest multiple of a(n) using only even digits.

Original entry on oeis.org

2, 4, 8, 24, 48, 240, 480, 2400, 4800, 24000, 48000, 240000, 480000, 2400000, 4800000, 24000000, 48000000, 240000000, 480000000, 2400000000, 4800000000, 24000000000, 48000000000, 240000000000, 480000000000, 2400000000000
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Comments

a(2n) = 24*10^(n-2), a(2n+1) = 48*10^(n-2) for n > 1.

Crossrefs

Cf. A078221.

Programs

  • Mathematica
    Join[{2,4,8},Flatten[Table[{24,48}10^n,{n,0,20}]]] (* Harvey P. Dale, May 01 2013 *)

Formula

From Chai Wah Wu, Nov 20 2019: (Start)
a(n) = 10*a(n-2) for n > 5.
G.f.: x*(32*x^4 + 16*x^3 + 12*x^2 - 4*x - 2)/(10*x^2 - 1). (End)

Extensions

More terms from Sascha Kurz, Jan 04 2003

A078224 a(n) = A078223(n+1)/A078223(n).

Original entry on oeis.org

2, 2, 3, 2, 6, 3, 7, 43, 101, 1526, 21626, 30507, 767145938, 1108516909537, 12667161621083528
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(9) = A078223(10) / A078223(9) = 26266464 / 260064 = 101.
		

Crossrefs

Extensions

More terms from Jon E. Schoenfield, Jun 04 2007
a(14) from Chai Wah Wu, Nov 20 2019
a(15) from Chai Wah Wu, Nov 29 2019

A078226 a(1) = 1, a(n+1) is the smallest odd multiple of a(n) (other than a(n) itself) in which the digits are alternately even and odd.

Original entry on oeis.org

1, 3, 9, 27, 81, 567, 8505, 76545, 9874305, 6763898925, 41672381276925, 25432529276163496725, 6947294789656341278149816125, 2341412581496361870123890149638785410125
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(6) = 567 = 7*a(5); the digits alternate odd, even, odd.
		

Crossrefs

Programs

  • Maple
    isA030141 := proc(n) local dgs,i ; dgs := convert(n,base,10) ; for i from 1 to nops(dgs)-1 do if ( op(i,dgs)+op(i+1,dgs)) mod 2 = 0 then RETURN(false) ; fi ; od ; RETURN(true) ; end: A078226 := proc(nmax) local a,f; a := [1] ; while nops(a) < nmax do f := 3 ; while true do if isA030141(f*op(-1,a)) then a := [op(a),f*op(-1,a)] ; print(op(-1,a)) ; break ; fi ; f := f+2 ; od ; od ; end: A078226(13) ; # R. J. Mathar, Mar 01 2007
  • Python
    A078226_list = [1]
    for _ in range(20):
        x = A078226_list[-1]
        y, x2 = x, 2*x
        while True:
            y += x2
            s = str(y)
            for j in range(len(s)-1, -1, -2):
                if not s[j] in ('1', '3', '5', '7', '9'):
                    break
            else:
                for k in range(len(s)-2, -1, -2):
                    if not s[k] in ('0', '2', '4', '6', '8'):
                        break
                else:
                    A078226_list.append(y)
                    break
    # Chai Wah Wu, Nov 06 2014

Extensions

More terms from Sascha Kurz, Jan 30 2003
a(12) from R. J. Mathar, Mar 01 2007
a(13), a(14) from Max Alekseyev, May 12 2010

A078227 a(1) = 2, a(n+1) is the smallest multiple of a(n) such that the digits are alternately odd and even. The unit digit is always even and parity alternates.

Original entry on oeis.org

2, 4, 8, 16, 32, 96, 672, 45696, 2787456, 270383232, 507238943232, 27274745216527872, 141232121898569036783616, 216567470725252501672125832323072
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Examples

			a(7) = 672 = 7*a(6) = 7*96. Starting with the unit digit the digits in 672 are alternately even and odd.
		

Crossrefs

Programs

  • Maple
    isAltr := proc(n) local nshft,osgn,sgn ; nshft := n ; osgn := ( n mod 10 ) mod 2 ; while nshft >= 10 do nshft := floor(nshft/10) ; sgn := ( nshft mod 10 ) mod 2 ; if sgn = osgn then RETURN(false) ; fi ; osgn := sgn ; od ; RETURN(true) ; end: A078227 := proc(prev) local m; m := 2 ; while true do if isAltr(m*prev) then RETURN(m*prev) ; fi ; m := m+1 ; od ; end: n := 2 : while true do print(n) ; n := A078227(n) : od : # R. J. Mathar, Nov 12 2006
  • Python
    A078227_list = [2]
    for _ in range(20):
        x = A078227_list[-1]
        y = x
        while True:
            y += x
            s = str(y)
            for j in range(len(s)-1,-1,-2):
                if not s[j] in ('0','2','4','6','8'):
                    break
            else:
                for k in range(len(s)-2,-1,-2):
                    if not s[k] in ('1','3','5','7','9'):
                        break
                else:
                    A078227_list.append(y)
                    break
    # Chai Wah Wu, Nov 06 2014

Extensions

More terms from R. J. Mathar, Nov 12 2006
a(13) and a(14) from Donovan Johnson, Mar 09 2008

A350536 a(n) is the smallest proper multiple of 2n+1 which contains only odd digits, or -1 if no such multiple exists.

Original entry on oeis.org

3, 9, 15, 35, 99, 33, 39, 75, 51, 57, 315, 115, 75, 135, 319, 93, 99, 175, 111, 117, 533, 559, 135, 517, 539, 153, 159, 715, 171, 177, 793, 315, 195, 335, 759, 355, 511, 375, 539, 395, 1377, 913, 595, 957, 979, 1911, 1395, 1995, 3395, 9999, 1111, 515, 315, 535, 1199, 333
Offset: 0

Views

Author

Bernard Schott, Jan 04 2022

Keywords

Comments

Generalization of the problem 1/2 of International Mathematical Talent Search, round 2 (see link and 2nd example).
If the escape clause is used, it will be necessarily for terms coming from n = 12 + 25*k, k >= 0.

Examples

			a(10) = 315 = 21 * 15 is the smallest multiple of 21 which contains only odd digits.
a(4998) = 33339995 = 9997 * 3335 is the smallest multiple of 9997 which contains only odd digits, so this is the answer to the IMTS problem.
		

Crossrefs

Terms belong to A014261.

Programs

  • Mathematica
    a[n_] := Module[{m = 2*n + 1, k}, k = 3*m; While[!AllTrue[IntegerDigits[k], OddQ], k += 2*m]; k]; Array[a, 50, 0] (* Amiram Eldar, Jan 04 2022 *)
  • PARI
    isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
    a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k; \\ Michel Marcus, Jan 04 2022
    
  • Python
    from itertools import product, count
    def A350536(n):
        m = 2*n+1
        for l in count(len(str(m))):
            for s in product('13579',repeat=l):
                k = int(''.join(s))
                if k > m and k % m == 0:
                    return k # Chai Wah Wu, Jan 11 2022

Extensions

More terms from Michel Marcus, Jan 04 2022

A329762 a(1) = 1; thereafter a(n+1) > a(n) is the smallest multiple of a(n) using only odd digits but not divisible by 3.

Original entry on oeis.org

1, 5, 35, 175, 7175, 179375, 17399375, 51797939375, 3315119917939375, 93137793511399131779375, 79375315115111911957537791599375, 55751171777397357155597571713137115337799375
Offset: 1

Views

Author

Chai Wah Wu, Dec 04 2019

Keywords

Comments

Equivalently, the sequence is defined as a(1) = 1, a(2) = 5, and for n > 1, a(n+1) > a(n) is the smallest multiple of a(n) using only odd digits. All terms besides a(1) are divisible by 5.

Crossrefs

A350537 Smallest number m > 1 such that (2n+1)*m = A350536(n) contains only odd digits.

Original entry on oeis.org

3, 3, 3, 5, 11, 3, 3, 5, 3, 3, 15, 5, 3, 5, 11, 3, 3, 5, 3, 3, 13, 13, 3, 11, 11, 3, 3, 13, 3, 3, 13, 5, 3, 5, 11, 5, 7, 5, 7, 5, 17, 11, 7, 11, 11, 21, 15, 21, 35, 101, 11, 5, 3, 5, 11, 3, 3, 5, 3, 3, 11, 11, 3, 11, 15, 3, 3, 13, 7, 7, 11, 5, 11, 5, 13, 5, 9, 5, 47, 5
Offset: 0

Views

Author

Bernard Schott, Jan 12 2022

Keywords

Comments

Record values of a(n) are 3, 5, 11, 15, 17, 21, 35, 101, 155, ...

Examples

			The smallest proper multiple of 21 = 2*10+1 with only odd digits is A350536(10) = 315, as 315 = 21 * 15, a(10) = 15.
		

Crossrefs

Programs

  • Mathematica
    Table[m=2;While[Or@@EvenQ[IntegerDigits[(2n+1)*++m]]];m,{n,0,79}] (* Giorgos Kalogeropoulos, Jan 12 2022 *)
  • PARI
    isok(k) = my(d=digits(k)); #d == #select(x->((x%2)==1), d);
    a(n) = my(k=6*n+3); while (!isok(k), k+=4*n+2); k/(2*n+1); \\ Michel Marcus, Jan 12 2022

Formula

a(n) = A350536(n) / (2n+1).

Extensions

More terms from Michel Marcus, Jan 12 2022

A078228 a(n) = A078227(n+1)/A078227(n).

Original entry on oeis.org

2, 2, 2, 2, 3, 7, 68, 61, 97, 1876, 53771, 5178128, 1533415117
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Crossrefs

Extensions

a(8)-a(13) from Donovan Johnson, Nov 11 2008
Showing 1-10 of 13 results. Next