cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A078241 Smallest multiple of n using only digits 0 and 2.

Original entry on oeis.org

2, 2, 222, 20, 20, 222, 2002, 200, 222222222, 20, 22, 2220, 2002, 2002, 2220, 2000, 22202, 222222222, 22002, 20, 20202, 22, 220202, 22200, 200, 2002, 2202222222, 20020, 2202202, 2220, 222022, 20000, 222222, 22202, 20020, 2222222220, 222
Offset: 1

Views

Author

Amarnath Murthy, Nov 23 2002

Keywords

Comments

a(n) = min{A169965(k): k > 1 and A169965(k) mod n = 0}. - Reinhard Zumkeller, Jan 10 2012

Crossrefs

Programs

  • Haskell
    a078241 n = head [x | x <- tail a169965_list, mod x n == 0]
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    Module[{m=Rest[FromDigits/@Tuples[{0,2},12]]},Table[Select[m,Divisible[ #,n]&,1],{n,40}]]//Flatten (* Harvey P. Dale, Jul 31 2017 *)
  • Python
    def A078241(n):
        if n > 0:
            for i in range(1,2**n):
                x = 2*int(bin(i)[2:])
                if not x % n:
                    return x
        return 0 # Chai Wah Wu, Dec 30 2014

Formula

a(n) < 10^n / (0.45 n). - Charles R Greathouse IV, Jan 09 2012
a(n) <= A216812(n) <= 2(10^n - 1)/9. - N. J. A. Sloane, Sep 18 2012

Extensions

More terms from Ray Chandler, Jul 12 2004

A169966 Numbers whose decimal expansion contains only 0's and 3's.

Original entry on oeis.org

0, 3, 30, 33, 300, 303, 330, 333, 3000, 3003, 3030, 3033, 3300, 3303, 3330, 3333, 30000, 30003, 30030, 30033, 30300, 30303, 30330, 30333, 33000, 33003, 33030, 33033, 33300, 33303, 33330, 33333, 300000, 300003, 300030, 300033, 300300, 300303, 300330, 300333
Offset: 1

Views

Author

N. J. A. Sloane, Aug 07 2010

Keywords

Crossrefs

Programs

  • Haskell
    a169966 n = a169966_list !! (n-1)
    a169966_list = map (* 3) a007088_list
    -- Reinhard Zumkeller, Jan 10 2012
    
  • Mathematica
    Map[FromDigits,Tuples[{0,3},6]] (* Paolo Xausa, Oct 30 2023 *)
  • PARI
    print1(0);for(d=1,5,for(n=2^(d-1),2^d-1,print1(", ");forstep(i=d-1,0,-1,print1((n>>i)%2*3)))) \\ Charles R Greathouse IV, Nov 16 2011
    
  • Python
    def a(n): return 3*int(bin(n)[2:])
    print([a(n) for n in range(40)]) # Michael S. Branicky, Mar 30 2021

Formula

a(n+1) = Sum_{k>=0} A030308(n,k)*A093138(k+1). - Philippe Deléham, Oct 16 2011
a(n) = 3 * A007088(n-1).

A096682 Least k such that decimal representation of k*n contains only digits 0 and 3.

Original entry on oeis.org

3, 15, 1, 75, 6, 5, 429, 375, 37, 3, 3, 25, 231, 2145, 2, 1875, 1959, 185, 1737, 15, 143, 15, 14361, 125, 12, 1155, 12345679, 10725, 113907, 1, 10743, 9375, 1, 9795, 858, 925, 9, 8685, 77, 75, 813, 715, 76821, 75, 74, 71805, 639, 625, 67347, 6, 653, 5775, 5661
Offset: 1

Views

Author

Ray Chandler, Jul 12 2004

Keywords

Crossrefs

Formula

a(n) = A078242(n)/n.
Showing 1-3 of 3 results.