cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078307 a(n) = Sum_{d divides n} (-1)^(n/d+1)*d^3.

Original entry on oeis.org

1, 7, 28, 55, 126, 196, 344, 439, 757, 882, 1332, 1540, 2198, 2408, 3528, 3511, 4914, 5299, 6860, 6930, 9632, 9324, 12168, 12292, 15751, 15386, 20440, 18920, 24390, 24696, 29792, 28087, 37296, 34398, 43344, 41635, 50654, 48020, 61544, 55314, 68922, 67424
Offset: 1

Views

Author

Vladeta Jovovic, Nov 22 2002

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= n-> add((-1)^(n/d+1)*d^3, d=divisors(n)):
    seq(a(n), n=1..70);  # Alois P. Heinz, Aug 03 2013
  • Mathematica
    a[n_] := Sum[(-1)^(n/d+1)*d^3, {d, Divisors[n]}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Jan 17 2014 *)
    f[p_, e_] := (p^(3*e + 3) - 1)/(p^3 - 1); f[2, e_] := (6*8^e + 1)/7; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 42] (* Amiram Eldar, Oct 27 2022 *)
  • PARI
    a(n) = sumdiv(n, d, (-1)^(n/d + 1)*d^3); \\ Indranil Ghosh, Apr 05 2017
    
  • Python
    from sympy import divisors
    print([sum((-1)**(n//d + 1)*d**3 for d in divisors(n)) for n in range(1, 51)]) # Indranil Ghosh, Apr 05 2017

Formula

G.f.: Sum_{n >= 1} n^3*x^n/(1+x^n).
Multiplicative with a(2^e) = (6*8^e+1)/7, a(p^e) = (p^(3*e+3)-1)/(p^3-1), p > 2.
L.g.f.: log(Product_{k>=1} (1 + x^k)^(k^2)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 12 2018
Sum_{k=1..n} a(k) ~ c * n^4, where c = 7*Pi^4/2880 = 0.236758... . - Amiram Eldar, Oct 27 2022