cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078346 a(1) = 1; a(n) = Sum_{k=1..n-1} a(floor((n-1)/k)).

Original entry on oeis.org

1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 62, 79, 104, 130, 163, 201, 249, 298, 363, 429, 513, 605, 714, 824, 966, 1112, 1284, 1468, 1687, 1907, 2181, 2456, 2779, 3120, 3510, 3910, 4394, 4879, 5430, 6008, 6677, 7347, 8139, 8932, 9836, 10788, 11850, 12913
Offset: 1

Views

Author

Benoit Cloitre, Nov 22 2002

Keywords

Crossrefs

Partial sums of A320224.

Programs

  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A078346(n):
        if n == 1:
            return 1
        c, j, k1 = n, 1, n-1
        while k1 > 1:
            j2 = (n-1)//k1 + 1
            c += (j2-j)*A078346(k1)
            j, k1 = j2, (n-1)//j2
        return c-j # Chai Wah Wu, Apr 29 2025

Formula

For k>1, a(prime(k)+1)=2*a(prime(k))-a(prime(k)-1)+1. - Benoit Cloitre, Aug 29 2004
G.f. A(x) satisfies: A(x) = x + (x/(1 - x)) * Sum_{k>=1} (1 - x^k) * A(x^k). - Ilya Gutkovskiy, Aug 11 2021