A078346 a(1) = 1; a(n) = Sum_{k=1..n-1} a(floor((n-1)/k)).
1, 1, 2, 4, 7, 11, 17, 24, 34, 46, 62, 79, 104, 130, 163, 201, 249, 298, 363, 429, 513, 605, 714, 824, 966, 1112, 1284, 1468, 1687, 1907, 2181, 2456, 2779, 3120, 3510, 3910, 4394, 4879, 5430, 6008, 6677, 7347, 8139, 8932, 9836, 10788, 11850, 12913
Offset: 1
Keywords
Crossrefs
Partial sums of A320224.
Programs
-
Python
from functools import lru_cache @lru_cache(maxsize=None) def A078346(n): if n == 1: return 1 c, j, k1 = n, 1, n-1 while k1 > 1: j2 = (n-1)//k1 + 1 c += (j2-j)*A078346(k1) j, k1 = j2, (n-1)//j2 return c-j # Chai Wah Wu, Apr 29 2025
Formula
For k>1, a(prime(k)+1)=2*a(prime(k))-a(prime(k)-1)+1. - Benoit Cloitre, Aug 29 2004
G.f. A(x) satisfies: A(x) = x + (x/(1 - x)) * Sum_{k>=1} (1 - x^k) * A(x^k). - Ilya Gutkovskiy, Aug 11 2021