A078358 Non-oblong numbers: Complement of A002378.
1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 73, 74
Offset: 1
References
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Oskar Perron, Die Lehre von den Kettenbrüchen, Teubner, Leipzig, 1913.
Programs
-
Haskell
a078358 n = a078358_list !! (n-1) a078358_list = filter ((== 0) . a005369) [0..] -- Reinhard Zumkeller, Jul 04 2014, May 08 2012
-
Mathematica
Complement[Range[930], Table[n (n + 1), {n, 0, 30}]] (* and *) Table[Ceiling[Sqrt[n]] + n - 1, {n, 900}] (* Vladimir Joseph Stephan Orlovsky, Jul 20 2011 *)
-
PARI
a(n)=sqrtint(n-1)+n \\ Charles R Greathouse IV, Jan 17 2013
-
Python
from operator import sub from sympy import integer_nthroot def A078358(n): return n+sub(*integer_nthroot(n,2)) # Chai Wah Wu, Oct 01 2024
Formula
4*a(n)+1 is not a square number.
a(n) = ceiling(sqrt(n)) + n -1. - Leroy Quet, Jul 06 2007
A005369(a(n)) = 0. - Reinhard Zumkeller, Jul 05 2014
Comments