A078363 A Chebyshev T-sequence with Diophantine property.
2, 13, 167, 2158, 27887, 360373, 4656962, 60180133, 777684767, 10049721838, 129868699127, 1678243366813, 21687295069442, 280256592535933, 3621648407897687, 46801172710133998, 604793596823844287, 7815515585999841733, 100996909021174098242
Offset: 0
References
- O. Perron, "Die Lehre von den Kettenbruechen, Bd.I", Teubner, 1954, 1957 (Sec. 30, Satz 3.35, p. 109 and table p. 108).
Links
Programs
-
Mathematica
a[0] = 2; a[1] = 13; a[n_] := 13a[n - 1] - a[n - 2]; Table[ a[n], {n, 0, 16}] (* Robert G. Wilson v, Jan 30 2004 *) LinearRecurrence[{13,-1},{2,13},20] (* Harvey P. Dale, Oct 28 2016 *)
-
PARI
a(n)=if(n<0,0,2*subst(poltchebi(n),x,13/2))
-
PARI
a(n)=if(n<0,0,polsym(1-13*x+x^2,n)[n+1])
-
PARI
Vec((2-13*x)/(1-13*x+x^2) + O(x^100)) \\ Colin Barker, Feb 26 2014
-
Sage
[lucas_number2(n,13,1) for n in range(0,20)] # Zerinvary Lajos, Jun 25 2008
Formula
a(n) = 13*a(n-1)-a(n-2), n >= 1; a(-1)=13, a(0)=2.
a(n) = S(n, 13) - S(n-2, 13) = 2*T(n, 13/2) with S(n, x) := U(n, x/2), S(-1, x) := 0, S(-2, x) := -1. S(n, 13)=A078362(n). U-, resp. T-, are Chebyshev's polynomials of the second, resp. first, case. See A049310 and A053120.
G.f.: (2-13*x)/(1-13*x+x^2).
a(n) = ap^n + am^n, with ap := (13+sqrt(165))/2 and am := (13-sqrt(165))/2.
a(n) = sqrt(4 + 165*A078362(n-1)^2), n>=1, (Pell equation d=165, +4).
E.g.f.: 2*exp(13*x/2)*cosh(sqrt(165)*x/2). - Stefano Spezia, Sep 24 2022
Extensions
More terms from Colin Barker, Feb 26 2014
Comments