A078391 Triangle read by rows: T(n,k) = Catalan(k)*Catalan(n-k).
1, 1, 1, 2, 1, 2, 5, 2, 2, 5, 14, 5, 4, 5, 14, 42, 14, 10, 10, 14, 42, 132, 42, 28, 25, 28, 42, 132, 429, 132, 84, 70, 70, 84, 132, 429, 1430, 429, 264, 210, 196, 210, 264, 429, 1430, 4862, 1430, 858, 660, 588, 588, 660, 858, 1430, 4862, 16796, 4862, 2860, 2145, 1848
Offset: 0
Examples
The triangle T(n,k) begins: n\k 0 1 2 3 4 5 6 7 8 9 10 ... 0: 1 1: 1 1 2: 2 1 2 3: 5 2 2 5 4: 14 5 4 5 14 5: 42 14 10 10 14 42 6: 132 42 28 25 28 42 132 7: 429 132 84 70 70 84 132 429 8: 1430 429 264 210 196 210 264 429 1430 9: 4862 1430 858 660 588 588 660 858 1430 4862 10: 16796 4862 2860 2145 1848 1764 1848 2145 2860 4862 16796 ... Reformatted - _Wolfdieter Lang_, Dec 27 2014 ----------------------------------------------------------------
References
- R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, first edition, page 225.
Links
- FindStat - Combinatorial Statistic Finder, The position of the first return of a Dyck path., The size of the left subtree.
- Kival Ngaokrajang, Illustration of C(n,k), for n = 1..7, k = 0..n-1
- Richard P. Stanley, Catalan Addendum (k8)
Crossrefs
Programs
-
Mathematica
nn=10;r=(1-(1-4x)^(1/2))/(2x);l=(1-(1-4x y)^(1/2))/(2x y);f[list_]:=Select[list,#>0&];Map[f,Drop[CoefficientList[Series[1+x l r,{x,0,nn}],{x,y}],1]]//Grid (* Geoffrey Critzer, Feb 24 2013 *) Table[CatalanNumber[k]CatalanNumber[n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Nov 14 2019 *)
Formula
G.f.: C(z)*C(tz), where C(z) = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n,k) = A118921(n+1,k+1)/(2*(n-k+1)). - Philippe Deléham, Dec 13 2006
When viewed as a square array, for n>0 and k>0, A(n,k) = Sum_{i=0..n-1,j=0..k-1} A[i,j]*A[n-i,k-j]. - Gerald McGarvey, Dec 30 2007
Comments