cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078391 Triangle read by rows: T(n,k) = Catalan(k)*Catalan(n-k).

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 5, 2, 2, 5, 14, 5, 4, 5, 14, 42, 14, 10, 10, 14, 42, 132, 42, 28, 25, 28, 42, 132, 429, 132, 84, 70, 70, 84, 132, 429, 1430, 429, 264, 210, 196, 210, 264, 429, 1430, 4862, 1430, 858, 660, 588, 588, 660, 858, 1430, 4862, 16796, 4862, 2860, 2145, 1848
Offset: 0

Views

Author

Henry Bottomley, Dec 24 2002

Keywords

Comments

T(n,k) is the number of Dyck paths of semilength n+1 whose first return point to the axis have abscissa 2k+2. - Emeric Deutsch, Mar 01 2004
With offset = 1, T(n,k) is the number of binary trees with n internal nodes that have exactly k internal nodes in the left subtree, n>=1, 0<=k<=n-1. - Geoffrey Critzer, Feb 24 2013
T(n-1,k) is also the number of tilings of a triangular shape T_n (row k has length k for k=1, 2, ..., n) with n rectangular tiles (including squares) with contain a rectangular tile (n-k,k+1) for k = 0, 1, ... ,n-1, n >= 1. Let the number of tilings of T_n with n rectangular tiles (including squares) be A(n) and take A(0) = 1. Decompose these n-tilings of T_n into n disjoint and exhaustive classes C(n, k), for k = 0, 1, ..., n-1, n >= 1. In class C(n, k) one takes a fixed rectangular tile (n-k,k+1) leaving triangles T_(n-1-k) and T_k to be tiled (but for the k=0 class T_0 is not shown). Then A(n) = A(n-1)*A(0) + A(n-2)*A(1) + ... + A(0)*A(n-1) = sum(A(n-1-k)*A(k), k=0..n-1), n >= 1, with A(0)=1. But this is the recurrence for the Catalan numbers, hence A(n) = C(n). See the link with examples n = 1..7. - Wolfdieter Lang and Kival Ngaokrajang, Dec 27 2014
T(n,k) is the number of triangulations of an (n+3)-polygon using a (0,1,k+2)-triangle. - Yuchun Ji, Jan 21 2021
Alternating sum of even index 2n is A079489(n). - F. Chapoton, Aug 26 2024

Examples

			The triangle T(n,k) begins:
n\k     0    1    2    3    4    5    6    7    8    9    10 ...
0:      1
1:      1    1
2:      2    1    2
3:      5    2    2    5
4:     14    5    4    5   14
5:     42   14   10   10   14   42
6:    132   42   28   25   28   42  132
7:    429  132   84   70   70   84  132  429
8:   1430  429  264  210  196  210  264  429 1430
9:   4862 1430  858  660  588  588  660  858 1430 4862
10: 16796 4862 2860 2145 1848 1764 1848 2145 2860 4862 16796
...  Reformatted - _Wolfdieter Lang_, Dec 27 2014
----------------------------------------------------------------
		

References

  • R. Sedgewick and P. Flajolet, Analysis of Algorithms, Addison Wesley, first edition, page 225.

Crossrefs

Row sums are Catalan numbers A000108(n+1). T(2*k,k) = A001246(k), k >= 0. T(n,0) = T(n,n) = A000108(n).

Programs

  • Mathematica
    nn=10;r=(1-(1-4x)^(1/2))/(2x);l=(1-(1-4x y)^(1/2))/(2x y);f[list_]:=Select[list,#>0&];Map[f,Drop[CoefficientList[Series[1+x l r,{x,0,nn}],{x,y}],1]]//Grid (* Geoffrey Critzer, Feb 24 2013 *)
    Table[CatalanNumber[k]CatalanNumber[n-k],{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Nov 14 2019 *)

Formula

G.f.: C(z)*C(tz), where C(z) = (1-sqrt(1-4z))/(2z) is the g.f. of the Catalan numbers (A000108). - Emeric Deutsch, Mar 01 2004
T(n,k) = A118921(n+1,k+1)/(2*(n-k+1)). - Philippe Deléham, Dec 13 2006
When viewed as a square array, for n>0 and k>0, A(n,k) = Sum_{i=0..n-1,j=0..k-1} A[i,j]*A[n-i,k-j]. - Gerald McGarvey, Dec 30 2007