A078444 Floor of geometric mean of two consecutive primes.
2, 3, 5, 8, 11, 14, 17, 20, 25, 29, 33, 38, 41, 44, 49, 55, 59, 63, 68, 71, 75, 80, 85, 92, 98, 101, 104, 107, 110, 119, 128, 133, 137, 143, 149, 153, 159, 164, 169, 175, 179, 185, 191, 194, 197, 204, 216, 224, 227, 230, 235, 239, 245, 253, 259, 265, 269, 273, 278
Offset: 1
Examples
a(7) = floor(sqrt(prime(7)*prime(8))) = 17.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Andrica's Conjecture
Programs
-
Magma
[Floor(Sqrt(NthPrime(n)*NthPrime(n+1))): n in [1..60]]; // Vincenzo Librandi, Dec 12 2015
-
Maple
seq(floor(sqrt(ithprime(i)*ithprime(i+1))), i=1..100); # Robert Israel, Dec 12 2015
-
Mathematica
Table[Floor[Sqrt[Prime[n] Prime[n + 1]]], {n, 60}] (* Vincenzo Librandi, Dec 12 2015 *) Table[Ceiling[(Prime[n] + Prime[n + 1])/2 - 1], {n, 100}] (* Miko Labalan, Dec 14 2015 *)
-
PARI
a(n) = sqrtint(prime(n)*prime(n+1)); \\ Michel Marcus, Dec 12 2015
Formula
a(n) = floor(sqrt(prime(n)*prime(n+1))).
From Miko Labalan, Dec 12 2015: (Start)
(End)
For n >= 2 these formulas are equivalent to sqrt(prime(n)*prime(n+1)) > (prime(n)+prime(n+1))/2 - 1, and thus to A001223(n) <= 2 + 2*sqrt(2*prime(n)). This would be implied by Andrica's conjecture, but is as yet unproven. - Robert Israel, Dec 13 2015
Comments