cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A362925 Triangle read by rows: T(n,m), n >= 0, 0 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 13, 8, 1, 52, 52, 47, 35, 16, 1, 203, 203, 188, 153, 97, 32, 1, 877, 877, 825, 706, 515, 275, 64, 1, 4140, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1
Offset: 0

Views

Author

N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth

Keywords

Comments

A variant of A113547 and A362924. See those entries for further information.

Examples

			Triangle begins:
       1;
       1,      1;
       2,      2,      1;
       5,      5,      4,      1;
      15,     15,     13,      8,     1;
      52,     52,     47,     35,    16,     1;
     203,    203,    188,    153,    97,    32,     1;
     877,    877,    825,    706,   515,   275,    64,     1;
    4140,   4140,   3937,   3479,  2744,  1785,   793,   128,    1;
   21147,  21147,  20270,  18313, 15177, 11002,  6347,  2315,  256,   1;
  115975, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1;
  ...
		

Crossrefs

Row sums are A000110(n+1).
Columns k=0+1,2-5 give A000110, A078468(n-2) (for n>=2), A383052(n-3) (for n>=3), A383053(n-4) (for n>=4), A383054(n-5) (for n>=5).
T(n+j,n) give (for j=0-2): A000012, A000079, A007689.
T(2n,n) gives A367820.

Programs

  • Maple
    T:= (n, k)-> add(Stirling2(n-k, j)*(j+1)^k, j=0..n-k):
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Dec 01 2023
  • Mathematica
    A362925[n_, m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}];
    Table[A362925[n,m],{n,0,15},{m,0,n}] (* Paolo Xausa, Dec 04 2023 *)

Formula

Sum_{k=0..n} (k+1) * T(n,k) = A040027(n+1). - Alois P. Heinz, Dec 02 2023

A362924 Triangle read by rows: T(n,m), n >= 1, 1 <= m <= n, is number of partitions of the set {1,2,...,n} that have at most one block contained in {1,...,m}.

Original entry on oeis.org

1, 2, 1, 5, 4, 1, 15, 13, 8, 1, 52, 47, 35, 16, 1, 203, 188, 153, 97, 32, 1, 877, 825, 706, 515, 275, 64, 1, 4140, 3937, 3479, 2744, 1785, 793, 128, 1, 21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1, 115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1, 678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1
Offset: 1

Views

Author

N. J. A. Sloane, Aug 10 2023, based on an email from Don Knuth

Keywords

Comments

Also, the maximum number of solutions to an exact cover problem with n items, of which m are secondary.

Examples

			Triangle begins:
  [1],
  [2, 1],
  [5, 4, 1],
  [15, 13, 8, 1],
  [52, 47, 35, 16, 1],
  [203, 188, 153, 97, 32, 1],
  [877, 825, 706, 515, 275, 64, 1],
  [4140, 3937, 3479, 2744, 1785, 793, 128, 1],
  [21147, 20270, 18313, 15177, 11002, 6347, 2315, 256, 1],
  [115975, 111835, 102678, 88033, 68303, 45368, 23073, 6817, 512, 1],
  [678570, 657423, 610989, 536882, 436297, 316305, 191866, 85475, 20195, 1024, 1],
...
For example, if n=4, m=3, then T(4,3) = 8, because out of the A000110(4) = 15 set partitions of {1,2,3,4}, those that have 2 or more blocks contained in {1,2,3} are
  {12,3,4},
  {13,2,4},
  {14,2,3},
  {23,1,4},
  {24,1,3},
  {34,1,2},
  {1,2,3,4},
  while
  {1234},
  {123,4},
  {124,3}
  {134,2}
  {234,1},
  {12,34}
  {13. 24}.
  {14, 23}
  do not.
		

References

  • D. E. Knuth, The Art of Computer Programming, Volume 4B, exercise 7.2.2.1--185, answer on page 468.

Crossrefs

See A113547 and A362925 for other versions of this triangle.
Row sums give A005493.

Programs

  • Maple
    with(combinat);
    T:=proc(n,m) local k;
    add(stirling2(n-m,k)*(k+1)^m, k=0..n-m);
    end;
  • Mathematica
    A362924[n_,m_]:=Sum[StirlingS2[n-m,k](k+1)^m,{k,0,n-m}];
    Table[A362924[n,m],{n,15},{m,n}] (* Paolo Xausa, Dec 02 2023 *)

Formula

T(n, 1) = Bell number (all set partitions) A000110(n);
T(n, n) = 1 when m=n (the only possibility is a single block);
T(n, n-1) = 2^{n-1} when m=n-1 (a single block or two blocks);
T(n, 2) = A078468(2).
In general, T(n, m) = Sum_{k=0..n-m} Stirling_2(n-m,k)*(k+1)^m.
Showing 1-2 of 2 results.