cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078483 G.f.: -2*x/(1 - 5*x - sqrt(1-4*x) + x*sqrt(1-4*x) + 2*x^2).

Original entry on oeis.org

1, 1, 2, 6, 20, 69, 243, 869, 3145, 11491, 42312, 156807, 584288, 2187298, 8221257, 31009841, 117331070, 445174418, 1693270531, 6454992143, 24657428519, 94363587324, 361741068087, 1388892123038, 5340282880156, 20560742443041, 79259430563491, 305889059254747
Offset: 0

Views

Author

N. J. A. Sloane, Jan 04 2003

Keywords

Comments

Number of data structures of a certain wreath product type.

Crossrefs

Programs

  • Mathematica
    catGF = (1 - Sqrt[1 - 4 x])/(2 x); CoefficientList[Normal[Series[1/(1 - (x + x^2 catGF^3)), {x, 0, 20}]], x] (* David Callan, Feb 06 2016 *)
    CoefficientList[Series[-2 x / (1 - 5 x - Sqrt[1 - 4 x] + x Sqrt[1 - 4 x] + 2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2016 *)
  • Maxima
    a(n):=sum(m*sum(((sum(binomial(j,-2*m-k+2*j)*binomial(m+k,j),j,0,m+k))*binomial(n-m-1,k-1))/(m+k),k,1,n-m),m,1,n)+1; /* Vladimir Kruchinin, Oct 11 2011 */

Formula

From Gary W. Adamson, Jul 14 2011: (Start)
a(n) is the upper left term in M^n, where M is the following infinite square production matrix:
1, 1, 0, 0, 0, 0, ...
1, 2, 1, 0, 0, 0, ...
1, 1, 1, 1, 0, 0, ...
1, 1, 1, 1, 1, 0, ...
1, 1, 1, 1, 1, 1, ...
... (End)
a(n) = 1 + Sum_{m=1..n} m*Sum_{k=1..n-m} (1/(m+k)) * ((Sum_{j=0..m+k} binomial(j,-2*m-k+2*j)*binomial(m+k,j))*binomial(n-m-1,k-1)). - Vladimir Kruchinin, Oct 11 2011
G.f.: 1/(1 - (x + x^2 * C(x)^3)) where C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. for the Catalan numbers A000108. - David Callan, Feb 06 2016
a(n) ~ 3 * 2^(2*n + 2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 20 2019
D-finite with recurrence: n*a(n) +2*(-5*n+4)*a(n-1) +3*(11*n-18)*a(n-2) +(-41*n+102)*a(n-3) +(21*n-64)*a(n-4) +2*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Jan 23 2020

Extensions

Replaced definition with g.f. given by Atkinson and Still (2002). - N. J. A. Sloane, May 24 2016