cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078509 Number of permutations p of {1,2,...,n} such that p(i)-i != 1 and p(i)-i != 2 for all i.

Original entry on oeis.org

1, 1, 1, 1, 5, 23, 131, 883, 6859, 60301, 591605, 6405317, 75843233, 974763571, 13512607303, 200949508327, 3190881283415, 53880906258521, 964039575154409, 18217997734199113, 362584510633666621, 7580578211464070863, 166099466140519353035, 3806162403831340850651
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, 1,
          (n-1)*a(n-1) +(n-3)*a(n-2) +a(n-3))
        end:
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 10 2014
  • Mathematica
    a = DifferenceRoot[Function[{y, n}, {-y[n] - n y[n+1] - (n+2) y[n+2] + y[n+3] == 0, y[0] == 1, y[1] == 1, y[2] == 1, y[3] == 1}]];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Dec 20 2020, after Alois P. Heinz *)

Formula

From Vladeta Jovovic, Jul 16 2007: (Start)
G.f.: x/(1+x)*Sum_{n>=0} (n+1)!*(x/(1+x)^2)^n.
a(n) = Sum_{k=1..n} (-1)^(n-k)*k!*binomial(n+k-2,2*k-2). (End)
a(n) ~ exp(-2) * n!. - Vaclav Kotesovec, Aug 25 2014

Extensions

More terms from Alois P. Heinz, Jan 10 2014