cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078529 Exponent sequence for a bilinear recursive sequence.

Original entry on oeis.org

3, 1, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 9, 10, 12, 15, 18, 21, 24, 28, 32, 36, 40, 45, 51, 55, 60, 66, 72, 78, 84, 91, 98, 105, 112, 120, 129, 136, 144, 153, 162, 171, 180, 190, 200, 210, 220, 231, 243, 253, 264, 276, 288, 300, 312, 325, 338, 351, 364, 378, 393, 406, 420
Offset: 0

Views

Author

Michael Somos, Nov 25 2002

Keywords

Examples

			3 + x + x^7 + 2*x^8 + 3*x^9 + 4*x^10 + 6*x^11 + 9*x^12 + 10*x^13 + ...
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2,-1,0,0,0,0,0,0,0,0,0,1,-2,1},{3,1,0,0,0,0,0,1,2,3,4,6,9,10},70] (* Harvey P. Dale, May 27 2017 *)
  • PARI
    {a(n) = (n%12==0) + (n-4)^2\8}

Formula

G.f.: (3 - 5*x + x^2 + x^3 + x^7 + x^11 - 2*x^12 + 3*x^13) / ((1 - x)^2 * (1 - x^12)).
a(8-n) - a(n) = -1 if n == 0 (mod 12), +1 if n == 8 (mod 12), 0 otherwise.