A078535 Coefficients of power series that satisfies A(x)^6 - 36x*A(x)^7 = 1, A(0)=1.
1, 6, 162, 5760, 232254, 10077696, 458960580, 21634449408, 1046465787510, 51644846702592, 2590092194793948, 131621703842267136, 6762649550214036780, 350714987252652441600, 18334388441036020419720, 965148007553698721955840, 51116742846877582931249574
Offset: 0
Keywords
Examples
A(x)^6 - 36x*A(x)^7 = 1 since A(x)^6 = 1 +36x +1512x^2 +68040x^3 +3193344x^4 +... and A(x)^7 = 1 +42x +1890x^2 +88704x^3 +... also a(5)=6^9, a(11)=6^22 = 131621703842267136.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
Programs
-
Mathematica
Table[6^(2*n)*Binomial[7*n/6-5/6, n]/(n+1),{n,0,20}] (* Vaclav Kotesovec, Dec 03 2014 *)
-
PARI
a(n) = {6^(2*n)*binomial((7*n-5)/6, n)/(n+1)} \\ Andrew Howroyd, Nov 05 2019
Formula
a(n) = 6^(2n)*binomial(7n/6-5/6, n)/(n+1). - Emeric Deutsch, Dec 10 2002
a(n) ~ 7^(7*n/6-1/3) * 6^n / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Dec 03 2014
From Seiichi Manyama, Jun 21 2025: (Start)
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^8).
G.f.: ( (1/x) * Series_Reversion(x/(1+36*x)^(7/6)) )^(1/7). (End)
Extensions
Terms a(13) and beyond from Andrew Howroyd, Nov 05 2019
Comments