cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A118313 Sum of squared end-to-end distances of all n-step self-avoiding walks on the simple cubic lattice.

Original entry on oeis.org

0, 6, 72, 582, 4032, 25566, 153528, 886926, 4983456, 27401502, 148157880, 790096950, 4166321184, 21760624254, 112743796632, 580052260230, 2966294589312, 15087996161382, 76384144381272, 385066579325550, 1933885653380544, 9679153967272734, 48295148145655224, 240292643254616694, 1192504522283625600, 5904015201226909614, 29166829902019914840, 143797743705453990030, 707626784073985438752, 3476154136334368955958, 17048697241184582716248, 83487969681726067169454, 408264709609407519880320, 1993794711631386183977574, 9724709261537887936102872, 47376158929939177384568598, 230547785968352575619933376
Offset: 0

Views

Author

R. J. Mathar, May 14 2006

Keywords

Comments

Number of walks is A001412(n).
a(5) is 25556 according to MacDonald et al., but 25566 according to Clisby et al. and is therefore conjectural for now. - R. J. Mathar, Aug 31 2007
Confirmed that a(5) is 25566 [from Nathan Clisby]. Right-hand column, table, p.5 of Schram.

Crossrefs

Extensions

a(5) corrected by Nathan Clisby, Nov 24 2010
a(14), a(22) corrected by Hugo Pfoertner, Aug 13 2011

A079156 Sum of end-to-end Manhattan distances over all self-avoiding n-step walks on cubic lattice. Numerator of mean Manhattan displacement s(n)=a(n)/A078717.

Original entry on oeis.org

10, 67, 396, 2201, 11870, 62571, 324896, 1665349, 8457890, 42605267, 213305636, 1061939193, 5263752278, 25984214383, 127848694424, 627084275649, 3067923454498
Offset: 2

Views

Author

Hugo Pfoertner, Dec 29 2002

Keywords

Comments

A conjectured asymptotic behavior for the mean Manhattan displacement is shown in a diagram lim n-> infinity a(n)/(A078717(n)*n^nu)=c, for some values of nu near 0.59 at Pfoertner link

Examples

			a(2)=10 because the A078717(2)=5 different self-avoiding 2-step walks end at (1,0,-1),(1,0,1),(1,-1,0),(1,1,0),(2,0,0)->d=2. a(2)=5*2=10. See also "Distribution of end point distance" at Pfoertner link
		

References

Crossrefs

Cf. A001412, A078717, A078605 (corresponding square displacement).

Programs

  • Fortran
    c Program for distance counting available at Pfoertner link.

Formula

a(n)= sum l=1, A078717(n) (|i_l| + |j_l| + |k_l|) where (i_l, j_l, k_l) are the end points of all different self-avoiding n-step walks starting at (0, 0, 0)

A323856 Sum of square displacements over all self-avoiding n-step walks on 4-d cubic lattice with first step specified, A242355(n)/8.

Original entry on oeis.org

1, 16, 177, 1696, 14995, 126180, 1025707, 8133544, 63274143, 484966972, 3672258385, 27533213880, 204715798387, 1511417062948, 11090886972237, 80957709527896, 588206815480213, 4256231985648516, 30685328305245631, 220504966309520728, 1579874958814261407
Offset: 1

Views

Author

Hugo Pfoertner, Feb 03 2019

Keywords

Examples

			a(1) = 1 is the square displacement of the fixed initial step.
a(2) = 16, because one of the A010575(2)/8 = 7 end points is (2,0,0,0) with square distance 4 and the other 6 end points (1,-1,0,0), (1,1,0,0), (1,0,-1,0), (1,0,1,0), (1,0,0,-1), (1,0,0,1) all have square distance 2. 16 = 1*4 + 6*2.
a(3) = 177, because there are 6 end points with square distance 1, e.g., (0,1,0,0), 24 end points with square distance 3, e.g., (1,1,1,0), 18 end points with square distance 5, e.g., (2,1,0,0), and 1 end point with square distance 9, (3,0,0,0). 177 = 6*1 + 24*3 + 18*5 + 1*9.
		

References

Crossrefs

A079157 Sum of square displacements over all self-avoiding walks on cubic lattice trapped after n steps. Numerator of mean square displacement a(n)/A077817(n).

Original entry on oeis.org

5, 50, 529, 3870, 28900, 185014, 1191698, 7080332, 42072344, 238337862
Offset: 11

Views

Author

Hugo Pfoertner, Dec 30 2002

Keywords

Examples

			a(12)=50 because the A077817(12)=20 trapped walks stop at 5*(1,1,0)->d^2=2, 5*(2,0,0)->d^2=4, 10*(1,0,1)->d^2=2. So, a(12)=5*2+5*4+10*2=50. See "Enumeration of all self-trapping walks of length 12" at link.
		

Crossrefs

Cf. A077817, A078605, A079158 (corresponding Manhattan distance sum).

Programs

  • Fortran
    c Program for distance counting available at link.

Formula

a(n) = Sum_{l=1..A077817(n)} (i_l^2 + j_l^2 + k_l^2) where (i_l, j_l, k_l) are the end points of all different self-avoiding walks trapped after n steps.

Extensions

a(15) corrected and a(19)-a(20) from Sean A. Irvine, Jul 31 2025
Showing 1-4 of 4 results.