cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078623 Number of matched parentheses and brackets of length n, where a closing bracket will close any remaining open parentheses back to the matching open bracket (as in some versions of LISP).

Original entry on oeis.org

1, 0, 2, 1, 9, 11, 56, 106, 421, 1009, 3565, 9736, 32594, 95811, 313535, 961780, 3123577, 9831373, 31915121, 102110314, 332366526, 1075228773, 3513373374, 11456961550, 37590603312, 123327267531, 406246177511, 1339274997451, 4427777075497, 14655559052686
Offset: 0

Views

Author

Brian T. Howard (bhoward(AT)depauw.edu), Dec 11 2002

Keywords

Comments

An unambiguous context-free grammar generating valid strings from S is S -> ( S ) S | [ T ] S | e T -> ( T | ( S ) T | [ T ] T | e

Examples

			a(5) = 11 because the valid strings of length 5 are ()[(], [(](), [(][], [][(], ([(]), [(()], [()(], [(((], [([]], [[(]] and [[](].
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<4, [1, 0, 2, 1][n+1],
          (4*(n+1)*(14*n^3-9*n^2-62*n+39) *a(n-1)
          +(140*n^4-160*n^3-401*n^2+469*n-78) *a(n-2)
          -12*(n-2)*(14*n^3-9*n^2-28*n-8) *a(n-3)
          +23*(n-2)*(n-3)*(28*n^2+24*n-43) *a(n-4))/
          ((n+2)*(n+1)*(28*n^2-32*n-39)))
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, May 19 2014
  • Mathematica
    a[n_] := Sum[Binomial[n+1, j]*Sum[(-1)^(i+j)*Binomial[j, i]*Binomial[2*n-2*j-i, n-i-j], {i, 0, n-j}], {j, 0, n+1}]/(n+1); Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Apr 03 2015, after Vladimir Kruchinin *)
    nmax = 40; A[] = 1; Do[A[x] = 1 - x*A[x] + x*(1 + 2*x)*A[x]^2 - x^3*A[x]^3 + O[x]^nmax // Normal, {nmax}]; CoefficientList[A[x], x] (* Vaclav Kotesovec, May 09 2019 *)
  • Maxima
    a(n):=sum(binomial(n+1,j)*sum((-1)^(i+j)*binomial(j,i)*binomial(2*n-2*j-i,n-i-j),i,0,n-j),j,0,n+1)/(n+1); /* Vladimir Kruchinin, May 19 2014 */

Formula

a(0) = 1, a(n) = Sum_{i=0..n-2} a(n-2-i)*(a(i) + b(i)), where b(0) = 1, b(n) = b(n-1) + Sum_{i=0..n-2} b(n-2-i)*(a(i) + b(i)).
a(n) = (Sum_{j=0..n+1} C(n+1,j)*Sum_{i=0..n-j} (-1)^(i+j)*C(j,i)*C(2*n-2*j-i,n-i-j)) / (n+1). - Vladimir Kruchinin, May 19 2014
a(n) ~ c * ((1+sqrt(13+16*sqrt(2)))/2)^n / n^(3/2), where c = sqrt(1 + 9/(8*sqrt(2)) - sqrt(211/224 + 43/(7*sqrt(2)))/2) / sqrt(Pi) = 0.453452365404498112381472576661214848447318569684502125279149391488... . - Vaclav Kotesovec, Aug 25 2014, updated May 09 2019
From Peter Bala, Oct 23 2015: (Start)
Conjecturally, a(n-1) = (-1)^(n-1)*(1/n)*Sum_{k=1..n} binomial(n,k)*binomial(n - 2*k,k - 1).
The formula (1/n)*Sum_{k=1..n} binomial(n,k)*binomial(n + m*k,k - 1) gives A001006 (m = -1), A000108 (m = 0), A001003 (m = 1) and A108447 (m = 2).
(End)
G.f. A(x) satisfies -1 + (1+x)*A(x) - x*(1+2*x)*A(x)^2 + x^3*A(x)^3 = 0. - Vaclav Kotesovec, May 09 2019