A078633 Smallest number of sticks of length 1 needed to construct n squares with sides of length 1.
4, 7, 10, 12, 15, 17, 20, 22, 24, 27, 29, 31, 34, 36, 38, 40, 43, 45, 47, 49, 52, 54, 56, 58, 60, 63, 65, 67, 69, 71, 74, 76, 78, 80, 82, 84, 87, 89, 91, 93, 95, 97, 100, 102, 104, 106, 108, 110, 112, 115, 117, 119, 121, 123, 125, 127, 130, 132, 134, 136, 138, 140, 142
Offset: 1
Examples
a(2)=7 because we have following construction: _ _ |_|_|
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Ralph H. Buchholz and Warwick De Launey, The square, the triangle and the hexagon, 1996.
- Douglas A. Torrance, Enumeration of planar Tangles, arXiv:1906.01541 [math.CO], 2019.
- Douglas A. Torrance, Enumeration of planar Tangles, Proc. Math. Sci. 130 (50) (2020).
Programs
-
Haskell
a078633 n = 2 * n + ceiling (2 * sqrt (fromIntegral n)) -- Reinhard Zumkeller, Aug 05 2014
-
Mathematica
Table[2n+Ceiling[2Sqrt[n]],{n,70}] (* Harvey P. Dale, Jun 20 2011 *)
-
PARI
a(n) = 2*n + ceil(2*sqrt(n)); \\ Michel Marcus, Mar 26 2018
-
Python
from math import isqrt def A078633(n): return (m:=n<<1)+1+isqrt((m<<1)-1) # Chai Wah Wu, Jul 28 2022
Formula
a(n) = 2*n + ceiling(2*sqrt(n)) = 2*n + A027434(n).
a(n) = (4*n + A027709(n))/2. - Tanya Khovanova, Mar 07 2008
Comments