cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078649 Numbers n such that A000002(n)=A000002(n+1) where A000002 is the Kolakoski sequence.

Original entry on oeis.org

2, 4, 8, 11, 13, 16, 18, 22, 26, 28, 31, 35, 38, 40, 44, 48, 51, 53, 56, 58, 62, 65, 67, 70, 74, 78, 80, 83, 85, 89, 92, 94, 97, 99, 103, 107, 110, 112, 115, 119, 121, 124, 126, 130, 133, 135, 138, 140, 144, 148, 150, 153, 157, 160, 162, 165, 167, 171, 175, 178, 180
Offset: 1

Views

Author

Benoit Cloitre, Dec 14 2002

Keywords

Comments

Complement sequence of A054353. - Benoit Cloitre, Feb 07 2009
This sequence is the union of A074262 and A074263. - Nathaniel Johnston, May 02 2011
A054354(a(n)-1) = 0. - Reinhard Zumkeller, Aug 03 2013
This is a subsequence of A216345. In particular, this consists of A216345(i) such that A000002(i) = A216345(i+1)-A216345(i) = 2. A013948 is the sequence of all such i. - Danny Rorabaugh, Mar 13 2015

Crossrefs

Programs

  • Haskell
    a078649 n = a078649_list !! (n-1)
    a078649_list = map (+ 1) $ filter ((== 0) . a054354) [1..]
    -- Reinhard Zumkeller, Aug 03 2013
  • Maple
    isA078649 := proc(n)
        if A000002(n) = A000002(n+1) then
            true;
        else
            false;
        end if;
    end proc:
    A078649 := proc(n)
        option remember;
        if n = 1 then
            2;
        else
            for a from procname(n-1)+1 do
                if isA078649(a) then
                    return a;
                end if;
            end do:
        end if;
    end proc:
    seq(A078649(n),n=1..50) ; # R. J. Mathar, Nov 15 2014
  • Mathematica
    a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1+Mod[n-1, 2]}], {n, 3, 80}, {a2[[n]]}]; a3 = Accumulate[a2]; Complement[ Range[ Last[a3]], a3] (* Jean-François Alcover, Jun 18 2013 *)

Formula

a(n) is probably asymptotic to 3*n.
a(n) = A216345(A013948(n)). - Danny Rorabaugh, Mar 13 2015