cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078678 Number of binary strings with n 1's and n 0's avoiding zigzags, that is avoiding the substrings 101 and 010.

Original entry on oeis.org

1, 2, 4, 8, 18, 42, 100, 242, 592, 1460, 3624, 9042, 22656, 56970, 143688, 363348, 920886, 2338566, 5949148, 15157874, 38674978, 98803052, 252701484, 646990518, 1658066668, 4252908542, 10917422860, 28046438252, 72099983802, 185469011130, 477383400300
Offset: 0

Views

Author

Emanuele Munarini, Dec 17 2002

Keywords

Comments

Also number of Grand Dyck paths of length 2*n with no zigzags, that is, with no factors UDU or DUD. - Emanuele Munarini, Jul 07 2011

Examples

			For n = 2 : 0011, 0110, 1001, 1100.
For n = 3 : 000111, 011001, 100011, 110001, 001110, 011100, 100110, 111000.
		

Crossrefs

Cf. A003440.
Main diagonal of array A099172.
Related to diagonal of rational functions: A268545-A268555.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<5, [1, 2, 4, 8, 18][n+1],
         (2*n*a(n-1)+(n-2)*a(n-2)+(2*n-8)*a(n-3)-(n-4)*a(n-4))/n)
        end:
    seq(a(n), n=0..40);  # Alois P. Heinz, Feb 13 2020
  • Mathematica
    Table[SeriesCoefficient[Series[Sqrt[(1 + x + x^2)/(1 - 3 x + x^2)], {x, 0, n}], n], {n, 0, 40}]
  • Maxima
    a(n):=coeff(taylor((1+x+x^2)/sqrt(1-2*x-x^2-2*x^3+x^4),x,0,n),x,n);
    makelist(a(n),n,0,12); /* Emanuele Munarini, Jul 07 2011 */
    
  • PARI
    my(x='x+O('x^99)); Vec(((1+x+x^2)/(1-3*x+x^2))^(1/2)) \\ Altug Alkan, Jul 18 2016

Formula

G.f.: sqrt( ( 1 + x + x^2 ) / ( 1 - 3*x + x^2 ) ).
a(n) = Sum_{k=0..n+floor(n/2)} binomial( n - k + 2*floor(k/3), floor(k/3) )^2.
a(n) = Sum_{k=0..floor(n/2)} binomial(n-k,k)^2*( 2*n^2 - 6*n*k + 6*k^2 )/(n-k)^2, n > 0.
a(n) ~ 2 * ((3+sqrt(5))/2)^n / (5^(1/4)*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014
a(n) = [x^n y^n](1+x*y+x^2*y^2)/(1-x-y+x*y-x^2*y^2). - Gheorghe Coserea, Jul 18 2016
D-finite with recurrence: n*a(n) -2*n*a(n-1) +(-n+2)*a(n-2) +2*(-n+4)*a(n-3) +(n-4)*a(n-4)=0. [Doslic] - R. J. Mathar, Jun 21 2018