cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078680 Smallest m > 0 such that n*2^m + 1 is prime, or 0 if no such m exists.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 3, 2, 1, 1, 4, 3, 1, 6, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 8, 3, 1, 2, 1, 1, 2, 5, 1, 4, 1, 3, 2, 1, 2, 8, 583, 1, 2, 1, 1, 6, 1, 1, 4, 1, 2, 2, 5, 2, 4, 7, 1, 2, 1, 5, 2, 1, 1, 2, 3, 3, 2, 1, 1, 4, 3, 1, 2, 3, 1, 10, 1, 2, 4, 1, 2, 2, 1, 1, 8, 7, 2, 582, 1, 1, 2, 1, 1, 2, 3, 2
Offset: 1

Views

Author

Benoit Cloitre, Dec 17 2002

Keywords

Comments

Sierpiński proved that a(n)=0 for an infinite number of n. The first proven zero is n=78557. There is a conjecture that the first zero is n=65536 (which is equivalent to the statement that 2^(2^k)+1 is composite for k>4). - T. D. Noe, Feb 25 2011 [Edited by Jeppe Stig Nielsen, Jul 01 2020]

Crossrefs

Cf. A050412, A040076, A078683 (primes n*2^m+1).

Programs

  • Maple
    A078680 := proc(n) for m from 1 do if isprime(n*2^m+1) then return m; end if; end do: end proc:
    seq(A078680(n),n=1..30) ; # R. J. Mathar, Feb 25 2011
  • Mathematica
    Table[m=1; While[! PrimeQ[n*2^m+1], m++]; m, {n, 100}] (* T. D. Noe, Feb 25 2011 *)
  • PARI
    a(n)=if(n<0, 0, m=1; while(isprime(n*2^m+1)==0, m++); m)

Formula

If a(n) = 0, then a(2n) is also 0. If a(n) = m with m > 1, then a(2n) = m-1. - Jeppe Stig Nielsen, Feb 12 2023

Extensions

Offset corrected by Jaroslav Krizek, Feb 13 2011