A078841 Main diagonal of the table of k-almost primes (A078840): a(n) = (n+1)-st integer that is an n-almost prime.
1, 3, 9, 20, 54, 112, 240, 648, 1344, 2816, 5760, 12800, 26624, 62208, 129024, 270336, 552960, 1114112, 2293760, 4915200, 9961472, 20447232, 47775744, 96468992, 198180864, 411041792, 830472192, 1698693120, 3422552064, 7046430720
Offset: 0
Keywords
Examples
a(0) = 1 since one is the multiplicative identity, a(1) = 2nd 1-almost prime is the second prime number = A000040(2) = 3, a(2) = 3rd 2-almost prime = 3rd semiprime = A001358(3) = 9 = {3*3}. a(3) = 4th 3-almost prime = A014612(4) = 20 = {2*2*5}. a(4) = 5th 4-almost prime = A014613(5) = 54 = {2*3*3*3}, a(5) = 6th 5-almost prime = A014614(6) = 112 = {2*2*2*2*7}, ....
Links
- Chai Wah Wu, Table of n, a(n) for n = 0..1000 (terms 0..228 from Robert G. Wilson v)
- Eric Weisstein's World of Mathematics, Almost Prime.
Programs
-
Mathematica
f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[ t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Table[ t[[n, n + 1]], {n, 30}] (* Robert G. Wilson v, Feb 11 2006 *) AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a,i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *) AlmostPrime[k_, n_] := Block[{e = Floor[ Log[2, n] + k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; AlmostPrime[1, 1] = 2; lst = {}; Do[ AppendTo[lst, AlmostPrime[n-1, n]], {n, 30}]; lst (* Robert G. Wilson v, Nov 13 2007 *)
-
Python
from math import prod, isqrt from sympy import primerange, integer_nthroot, primepi def A078841(n): if n <= 1: return (n<<1)+1 def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1))) def f(x): return int(n+x-sum(primepi(x//prod(c[1] for c in a))-a[-1][0] for a in g(x,0,1,1,n))) kmin, kmax = 1,2 while f(kmax) >= kmax: kmax <<= 1 while True: kmid = kmax+kmin>>1 if f(kmid) < kmid: kmax = kmid else: kmin = kmid if kmax-kmin <= 1: break return kmax # Chai Wah Wu, Aug 23 2024
Formula
Conjecture: Lim as n->inf. of a(n+1)/a(n) = 2. - Robert G. Wilson v, Nov 13 2007
Extensions
a(14)-a(29) from Robert G. Wilson v, Feb 11 2006
Comments