A078842 Sums of the antidiagonals of the table of k-almost primes (A078840).
1, 2, 7, 19, 44, 95, 195, 395, 794, 1583, 3172, 6334, 12665, 25313, 50596, 101180, 202326, 404635, 809227, 1618410, 3236766, 6473474, 12946903, 25893723, 51787365, 103574668, 207149213, 414298342, 828596584, 1657193052, 3314385970
Offset: 0
Keywords
Examples
a(3) = 19 = 5 (3rd prime) + 6 (2nd 2-almost prime) + 8 (first 3-almost prime).
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..140.
- Eric Weisstein's World of Mathematics, k-Almost Prime.
Programs
-
Mathematica
f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Plus @@@ Table[t[[n - k + 1, k]], {n, 30}, {k, n, 1, -1}] (* Or *) AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein Feb 07 2006 *) AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n - k + 1], {k, n}], {n, 150}] (* Robert G. Wilson v, Feb 11 2006 *)
Formula
a(n) = Sum_{i=0..n-1} A078840(i+1, n-i).
Extensions
a(12)-a(30) from Robert G. Wilson v, Feb 11 2006
Comments