cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078842 Sums of the antidiagonals of the table of k-almost primes (A078840).

Original entry on oeis.org

1, 2, 7, 19, 44, 95, 195, 395, 794, 1583, 3172, 6334, 12665, 25313, 50596, 101180, 202326, 404635, 809227, 1618410, 3236766, 6473474, 12946903, 25893723, 51787365, 103574668, 207149213, 414298342, 828596584, 1657193052, 3314385970
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 11 2002

Keywords

Comments

A k-almost prime is a positive integer that has exactly k prime factors counted with multiplicity.

Examples

			a(3) = 19 = 5 (3rd prime) + 6 (2nd 2-almost prime) + 8 (first 3-almost prime).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Plus @@ Last /@ FactorInteger@n; t = Table[{}, {40}]; Do[a = f[n]; AppendTo[t[[a]], n]; t[[a]] = Take[t[[a]], 10], {n, 2, 148*10^8}]; Plus @@@ Table[t[[n - k + 1, k]], {n, 30}, {k, n, 1, -1}] (* Or *)
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein Feb 07 2006 *)
    AlmostPrime[k_, n_] := Block[{e = Floor[Log[2, n]+k], a, b}, a = 2^e; Do[b = 2^p; While[ AlmostPrimePi[k, a] < n, a = a + b]; a = a - b/2, {p, e, 0, -1}]; a + b/2]; Table[ Sum[ AlmostPrime[k, n - k + 1], {k, n}], {n, 150}] (* Robert G. Wilson v, Feb 11 2006 *)

Formula

a(n) = Sum_{i=0..n-1} A078840(i+1, n-i).

Extensions

a(12)-a(30) from Robert G. Wilson v, Feb 11 2006