cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078844 Where 5^n occurs in n-almost-primes, starting at a(0)=1.

Original entry on oeis.org

1, 3, 9, 30, 90, 269, 788, 2249, 6340, 17526, 47911, 129639, 348251, 929714, 2469499, 6532869, 17219031, 45246630, 118572805, 309998131, 808746993, 2105893899, 5474080107, 14207001052, 36818679828, 95292132897, 246327403310
Offset: 0

Views

Author

Benoit Cloitre and Paul D. Hanna, Dec 10 2002

Keywords

Comments

A k-almost-prime is a positive integer that has exactly k prime factors, counted with multiplicity.

Examples

			a(2) = 9 since 5^2 is the 9th 2-almost-prime: {4,6,9,10,14,15,21,22,25,...}.
		

Crossrefs

Programs

  • Mathematica
    l = Table[0, {30}]; e = 0; Do[f = Plus @@ Last /@ FactorInteger[n]; l[[f+1]]++; If[n == 5^e, Print[l[[f+1]]]; e++ ], {n, 1, 5^10}] (* Ryan Propper, Aug 08 2005 *)
    AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]]; (* Eric W. Weisstein, Feb 07 2006 *)
    Join[{1},Table[ AlmostPrimePi[n, 5^n], {n, 1, 25}]] (* Robert G. Wilson v, Feb 10 2006 *)
  • Python
    from math import isqrt, prod
    from sympy import primerange, integer_nthroot, primepi
    def almostprimepi(n, k):
        if k==0: return int(n>=1)
        def g(x, a, b, c, m): yield from (((d, ) for d in enumerate(primerange(b, isqrt(x//c)+1), a)) if m==2 else (((a2, b2), )+d for a2, b2 in enumerate(primerange(b, integer_nthroot(x//c, m)[0]+1), a) for d in g(x, a2, b2, c*b2, m-1)))
        return int(sum(primepi(n//prod(c[1] for c in a))-a[-1][0] for a in g(n, 0, 1, 1, k)) if k>1 else primepi(n))
    def A078844(n): return almostprimepi(5**n, n) if n else 1 # Chai Wah Wu, Nov 07 2024

Extensions

a(8)-a(10) from Ryan Propper, Aug 08 2005
a(11)-a(25) from Robert G. Wilson v, Feb 10 2006
a(26) from Donovan Johnson, Sep 27 2010