cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A027856 Dan numbers: numbers m of the form 2^j * 3^k such that m +- 1 are twin primes.

Original entry on oeis.org

4, 6, 12, 18, 72, 108, 192, 432, 1152, 2592, 139968, 472392, 786432, 995328, 57395628, 63700992, 169869312, 4076863488, 10871635968, 2348273369088, 56358560858112, 79164837199872, 84537841287168, 150289495621632, 578415690713088, 1141260857376768
Offset: 1

Views

Author

Richard C. Schroeppel

Keywords

Comments

Special twin prime averages (A014574).
Intersection of A014574 and A003586. - Jeppe Stig Nielsen, Sep 05 2017

Examples

			a(14) = 243*4096 = 995328 and {995327, 995329} are twin primes.
		

Crossrefs

Programs

  • Mathematica
    Select[#, Total@ Boole@ Map[PrimeQ, # + {-1, 1}] == 2 &] &@ Select[Range[10^7], PowerMod[6, #, #] == 0 &] (* Michael De Vlieger, Dec 31 2016 *)
    seq[max_] := Select[Sort[Flatten[Table[2^i*3^j, {i, 1, Floor[Log2[max]]}, {j, 0, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {-1, 1}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)

Formula

a(n) = A078883(n) + 1 = A078884(n) - 1. - Amiram Eldar, Aug 27 2024

Extensions

Offset corrected by Donovan Johnson, Dec 02 2011
Entry revised by N. J. A. Sloane, Jan 01 2017

A059960 Smaller term of a pair of twin primes such that prime factors of their average are only 2 and 3.

Original entry on oeis.org

5, 11, 17, 71, 107, 191, 431, 1151, 2591, 139967, 472391, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967, 2348273369087, 56358560858111, 79164837199871, 84537841287167, 150289495621631, 578415690713087, 1141260857376767
Offset: 1

Views

Author

Labos Elemer, Mar 02 2001

Keywords

Comments

Lesser of twin primes p such that p+1 = (2^u)*(3^w), u,w >= 1.
Primes p(k) such that the number of distinct prime divisors of all composite numbers between p(k) and p(k+1) is 2. - Amarnath Murthy, Sep 26 2002

Examples

			a(11)+1 = 2*2*2*3*3*3*3*3*3*3*3*3*3 = 472392.
		

Crossrefs

Programs

  • Mathematica
    nn=10^15; Sort[Reap[Do[n=2^i 3^j; If[n<=nn && PrimeQ[n-1] && PrimeQ[n+1], Sow[n-1]], {i, Log[2, nn]}, {j, Log[3, nn]}]][[2, 1]]]
    Select[Select[Partition[Prime[Range[38*10^5]],2,1],#[[2]]-#[[1]]==2&][[All,1]],FactorInteger[#+1][[All,1]]=={2,3}&] (* The program generates the first 15 terms of the sequence. *)
    seq[max_] := Select[Sort[Flatten[Table[2^i*3^j - 1, {i, 1, Floor[Log2[max]]}, {j, 1, Floor[Log[3, max/2^i]]}]]], And @@ PrimeQ[# + {0, 2}] &]; seq[2*10^15] (* Amiram Eldar, Aug 27 2024 *)

Formula

a(n) = A027856(n+1) - 1. - Amiram Eldar, Mar 17 2025

A078884 Greater member p of a twin prime pair such that p-1 is 3-smooth.

Original entry on oeis.org

5, 7, 13, 19, 73, 109, 193, 433, 1153, 2593, 139969, 472393, 786433, 995329, 57395629, 63700993, 169869313, 4076863489, 10871635969, 2348273369089, 56358560858113, 79164837199873, 84537841287169, 150289495621633
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 11 2002

Keywords

Examples

			A000040(21)=73 and 73-1=72=2^3*3^2=A003586(17) and 73-2=71=A000040(20), therefore 73 is a term.
		

Crossrefs

Essentially the same as A060211.

Programs

  • Maple
    N:= 10^100:
    sort(select(t -> isprime(t) and isprime(t-2),
    [seq(seq(1+2^i*3^j,i=1..ilog2(floor(N/3^j))),j=0..floor(log[3](N)))])); # Robert Israel, May 14 2018
  • Mathematica
    1 + Select[With[{n = 10^15}, Sort@ Flatten@ Table[2^p * 3^q, {p, 0, Log2@ n}, {q, 0, Log[3, n/(2^p)]}] ], AllTrue[# + {-1, 1}, PrimeQ] &] (* Michael De Vlieger, May 14 2018 *)

Formula

a(n) = A027856(n) + 1 = A078883(n) + 2.

A284202 Numbers m such that phi(sum of divisors of m) = lambda(sum of distinct primes dividing m).

Original entry on oeis.org

3, 6, 10, 22, 34, 142, 214, 382, 862, 2302, 5182, 279934, 944782, 1572862, 1990654, 114791254, 127401982, 339738622, 8153726974, 21743271934, 4696546738174, 112717121716222, 158329674399742, 169075682574334, 300578991243262
Offset: 1

Views

Author

Michel Lagneau, Mar 22 2017

Keywords

Comments

Or numbers m such that A000010(A000203(m)) = A002322(A008472(m)), where phi is the Euler totient function and lambda is Carmichael's function.
Properties of the sequence:
(1) for n > 1, it seems that a(n) = 2*A078883(n) = 2*(Lesser member p of a twin prime pair such that p+1 is 3-smooth).
(2) {a(n)} is included in {A282515(n)}.
(3) for n > 2, a(n)/2 is a prime number congruent to 5 mod 6.

Examples

			34 is in the sequence because A000010(A000203(34)) = A000010(54) = 18, and
A002322(A008472(34)) = A002322(19) = 18.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[10^6], EulerPhi@ DivisorSigma[1, #] == CarmichaelLambda[Total@ FactorInteger[#][[All, 1]]] &]
  • PARI
    lambda(n) = lcm(znstar(n)[2]); \\ after Charles R Greathouse IV in A002322
    sopf(n) = vecsum(factor(n)[,1])
    isok(n) = eulerphi(sigma(n)) == lambda(sopf(n)) \\ Indranil Ghosh, Mar 22 2017

A303436 Primes p such that all the composite numbers between p and its next prime have no more than 2 distinct prime factors.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 19, 23, 31, 37, 43, 47, 53, 71, 79, 97, 107, 157, 191, 223, 431, 499, 673, 1151, 1213, 2591, 51199, 139967, 472391, 703123, 786431, 995327, 57395627, 63700991, 169869311, 4076863487, 10871635967
Offset: 1

Views

Author

Amiram Eldar, Apr 24 2018

Keywords

Comments

Supersequence of A078883. Terms that are not there: 2, 7, 13, 19, 23, 31, 37, 43, 47, 53, 79, 97, 157, 223, 499, 673, 1213, 51199, 703123, ...
5*10^11 < a(39) <= 2348273369087. - Giovanni Resta, Apr 26 2018

Examples

			157 is in the sequence since it is a prime, and the composite numbers between it and its next prime, 163, have only 2 distinct prime factors: 158 = 2*79, 159 = 3*53, 160 = 2^5*5, 161 = 7*23, and 162 = 2*3^4.
		

Crossrefs

Cf. A078883.

Programs

  • Mathematica
    b[n_] := Max[Map[PrimeNu, Range[n + 1, NextPrime[n] - 1]]]; c[n_] := b[Prime[n]]; a={}; Do[If[c[n] < 3, AppendTo[a, Prime[n]]], {n, 1, 10^7}]; a
  • PARI
    isok(p) = {if (isprime(p), for(c=p+1, nextprime(p+1)-1, if (omega(c) != 2, return(0));); return (1););} \\ Michel Marcus, Apr 26 2018

Extensions

a(36) from Michel Marcus, Apr 26 2018
a(37)-a(38) from Giovanni Resta, Apr 26 2018
Showing 1-5 of 5 results.