A078903 a(n) = n^2 - Sum_{u=1..n} Sum_{v=1..u} valuation(2*v, 2).
0, 0, 1, 1, 2, 3, 5, 5, 6, 7, 9, 10, 12, 14, 17, 17, 18, 19, 21, 22, 24, 26, 29, 30, 32, 34, 37, 39, 42, 45, 49, 49, 50, 51, 53, 54, 56, 58, 61, 62, 64, 66, 69, 71, 74, 77, 81, 82, 84, 86, 89, 91, 94, 97, 101, 103, 106, 109, 113, 116, 120, 124, 129, 129, 130, 131, 133, 134
Offset: 1
Keywords
Examples
Fr(1, n) for 1 <= n <= 4^2-3 = 13 gives 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1. Fr(2, n) for 1 <= n <= 4^3-3 = 63 gives 2, 4, 5, 7, 8, 9, 9, 11, 12, 13, 13, 14, 14, 14, 13, 15, 16, 17, 17, 18, 18, 18, 17, 18, 18, 18, 17, 17, 16, 15, 13, 15, 16, 17, 17, 18, 18, 18, 17, 18, 18, 18, 17, 17, 16, 15, 13, 14, 14, 14, 13, 13, 12, 11, 9, 9, 8, 7, 5, 4, 2.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Exact and asymptotic solutions of the recurrence f(n) = f(floor(n/2)) + f(ceiling(n/2)) + g(n): theory and applications, preprint, 2016.
- Hsien-Kuei Hwang, Svante Janson, Tsung-Hsi Tsai, Exact and Asymptotic Solutions of a Divide-and-Conquer Recurrence Dividing at Half: Theory and Applications, ACM Transactions on Algorithms 13:4 (2017), #47.
- Ralf Stephan, Some divide-and-conquer sequences with (relatively) simple generating functions, 2004.
- Ralf Stephan, Table of generating functions (ps file).
- Ralf Stephan, Table of generating functions (pdf file).
Programs
-
Magma
[n^2-(&+[ &+[Valuation(2*v,2):v in [1..u]]:u in [1..n]]):n in [1..70]]; // Marius A. Burtea, Oct 24 2019
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)-1+add(i, i=Bits[Split](n))) end: seq(a(n), n=1..68); # Alois P. Heinz, Feb 03 2024
-
Mathematica
Accumulate@Table[DigitCount[n, 2, 1] - 1, {n, 68}] (* Ivan Neretin, Sep 07 2017 *)
-
PARI
a(n)=n^2-sum(u=1,n,sum(v=1,u,valuation(2*v,2)))
-
Python
def A078903(n): return (n+1)*n.bit_count()-n+(sum((m:=1<
>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1) # Chai Wah Wu, Nov 12 2024
Formula
a(n) = n^2 - Sum_{k=1..n} A005187(k);
a(n) = n^2 - Sum_{u=1..n} Sum_{v=1..u} A001511(v);
a(n+1) - a(n) = A048881(n).
G.f.: 1/(1-x)^2 * ((x(1+x)/(1-x) - Sum_{k>=0} x^2^k/(1-x^2^k))). - Ralf Stephan, Apr 12 2002
a(0) = 0, a(2*n) = a(n) + a(n-1) + n - 1, a(2*n+1) = 2*a(n) + n. Also, a(n) = A000788(n) - n. - Ralf Stephan, Oct 05 2003
Comments