cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A078903 a(n) = n^2 - Sum_{u=1..n} Sum_{v=1..u} valuation(2*v, 2).

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 5, 5, 6, 7, 9, 10, 12, 14, 17, 17, 18, 19, 21, 22, 24, 26, 29, 30, 32, 34, 37, 39, 42, 45, 49, 49, 50, 51, 53, 54, 56, 58, 61, 62, 64, 66, 69, 71, 74, 77, 81, 82, 84, 86, 89, 91, 94, 97, 101, 103, 106, 109, 113, 116, 120, 124, 129, 129, 130, 131, 133, 134
Offset: 1

Views

Author

Benoit Cloitre, Dec 12 2002

Keywords

Comments

This is a fractal generator sequence. Let Fr(m,n) = m*n - a(n); then the graph of Fr(m,n) for 1 <= n <= 4^(m+1) - 3 presents fractal aspects.

Examples

			Fr(1, n) for 1 <= n <= 4^2-3 = 13 gives 1, 2, 2, 3, 3, 3, 2, 3, 3, 3, 2, 2, 1.
Fr(2, n) for 1 <= n <= 4^3-3 = 63 gives 2, 4, 5, 7, 8, 9, 9, 11, 12, 13, 13, 14, 14, 14, 13, 15, 16, 17, 17, 18, 18, 18, 17, 18, 18, 18, 17, 17, 16, 15, 13, 15, 16, 17, 17, 18, 18, 18, 17, 18, 18, 18, 17, 17, 16, 15, 13, 14, 14, 14, 13, 13, 12, 11, 9, 9, 8, 7, 5, 4, 2.
		

Crossrefs

Equals (1/2) * A076178(n).

Programs

  • Magma
    [n^2-(&+[ &+[Valuation(2*v,2):v in [1..u]]:u in [1..n]]):n in [1..70]]; //  Marius A. Burtea, Oct 24 2019
    
  • Maple
    a:= proc(n) option remember; `if`(n=0, 0,
          a(n-1)-1+add(i, i=Bits[Split](n)))
        end:
    seq(a(n), n=1..68);  # Alois P. Heinz, Feb 03 2024
  • Mathematica
    Accumulate@Table[DigitCount[n, 2, 1] - 1, {n, 68}] (* Ivan Neretin, Sep 07 2017 *)
  • PARI
    a(n)=n^2-sum(u=1,n,sum(v=1,u,valuation(2*v,2)))
    
  • Python
    def A078903(n): return (n+1)*n.bit_count()-n+(sum((m:=1<>j)-(r if n<<1>=m*(r:=k<<1|1) else 0)) for j in range(1,n.bit_length()+1))>>1)  # Chai Wah Wu, Nov 12 2024

Formula

a(n) = n^2 - Sum_{k=1..n} A005187(k);
a(n) = n^2 - Sum_{u=1..n} Sum_{v=1..u} A001511(v);
a(n+1) - a(n) = A048881(n).
G.f.: 1/(1-x)^2 * ((x(1+x)/(1-x) - Sum_{k>=0} x^2^k/(1-x^2^k))). - Ralf Stephan, Apr 12 2002
a(0) = 0, a(2*n) = a(n) + a(n-1) + n - 1, a(2*n+1) = 2*a(n) + n. Also, a(n) = A000788(n) - n. - Ralf Stephan, Oct 05 2003